59 research outputs found
Good practice?
Der vorliegende Text ist ein arbeitspsychologischer Forschungsbeitrag zum International Year of Volunteering. Durchgeführt wurde eine qualitative Organisationsanalyse bzw. -beschreibung. Dabei handelte es sich um Organisationen, die aufgrund von Eigeninitiative gemeinwohlorientierte Aufgaben übernommen und freiwillige Mitarbeiterinnen und Mitarbeiter einbezogen haben. Die Ergebnisse zeigen deutlich, dass sich vier Beschreibungsdimensionen (sinnerzeugende ureigene Idee; Sensibilität gegenüber Zeitfragen; Sensibilität für innere soziale Prozesse; produktiver Umgang mit Hindernissen) herauskristallisieren lassen. Gelingt es den jeweiligen Organisationen, diese vier Beschreibungsdimen-sionen gut auf einander abzustimmen und eine Balance zwischen Beständigkeit (Vermittlung der ureigenen Idee) und Wandel über die Zeit hinweg (Austausch und Nähe zur Basis) herzustellen, dann kann von Good Practice gesprochen werden. Good Practice meint, dass es der Organisation bzw. Initiativen gelungen ist, Sinnprägnanz herzustellen: Sinnprägnanz in einem Ausmaß, wie es marktorientierten Unternehmen nicht gelingt.This text is meant to be a work psychological contribution to the International Year of Volunteering. By applying a qualitative methodology an analysis of organizational processes has been realized and that has involved employees on a voluntary basis for realizing these tasks. The results clearly show that four descriptive dimensions may be sorted out: the elaborations of own ideas as a basis for sound sense making, a sensibility of issues concerning the actual societal discourse, a sensitivity of internal social processes and productive strategies in dealing with obstacles. If the organizations succeed in coordinating these four dimensions and in creating a balance between continuity (mediation of own ideas) and change in the course of time (in close contact and exchange with the organizational basis) one may speak of Good Practice. When speaking of Good Practice we refer to a balanced process between continuity and change wich allows bringing about concise sense making, a process that market oriented organizations have difficulties in dealing with
Marina: realizing ML-driven real-time network traffic monitoring at terabit scale
Network operators require real-time traffic monitoring insights to provide high performance and security to their customers. It has been shown that artificial intelligence and machine learning (ML) can improve the visibility of telemetry systems, especially with encrypted traffic. However, current solutions cannot cope with high traffic rates and volumes in large-scale networks. To realize the ML-driven network intelligence paradigm at terabit scale, we design Marina, a system that spreads monitoring over a highly efficient data plane, which can extract traffic statistics at line rate, and a powerful ML server, which can run monitoring inference using complex ML models. We apply temporal microaggregation into sub-second time slots and extract moment-based statistics. These allow to flexibly obtain accurate ML-based monitoring decisions during the next time slot. To demonstrate the scalability of our design, we implement and evaluate a Marina data plane prototype on a Barefoot Wedge 100BF-65X P4 switch, which can monitor more than 520,000 concurrent flows at full switching capacity of 6.4 Tbps. We validate the analytics capabilities enabled by our Marina implementation for four ML-driven real-time monitoring tasks with a broad set of standard ML models, achieving comparable or better than state-of-the-art results
Particle Mass Concentrations and Number Size Distributions in 40 Homes in Germany : Indoor-to-outdoor Relationships, Diurnal and Seasonal Variation
Few studies investigated residential particle concentration levels with a full picture of aerosol particles from 10 mu m to 10 mu m size range with size-resolved information, and none was performed in central Europe in the long-term in multiple homes. To capture representative diurnal and seasonal patterns of exposure to particles, and investigate the driving factors to their variations, measurements were performed in 40 homes for around two weeks each in Leipzig and Berlin, Germany. These over 500 days' measurements combined PM10 and PM2. 5 mass concentrations, particle number concentration and size distribution (PNC and PNSD, 10-800 nm), CO2 concentration, and residential activities diary into a unique dataset. Natural ventilation was dominated, the mean ventilation rate calculated from CO2 measurements was 0.2 h(-1) and 3.7 h(-1) with closed and opened windows, respectively. The main findings of this study showed that, the residents in German homes were exposed to a significantly higher mass concentration of coarse particles than outdoors, thus indoor exposure to coarse particles cannot be described by outdoors. The median indoor PNC diurnal cycles were generally lower than outdoors (median I/O ratio 0.69). However, indoor exposure to particles was different in the cold and warm season. In the warm season, due to longer opening window periods, indoor sources' contribution was weakened, which also resulted in the indoor PNC and PNSD being very similar to the outdoors. In the cold season, indoor sources caused strong peaks of indoor PNC that exceeded outdoors, along with the relatively low penetration factor - 0.5 for all size ranges, and indoor particle losses, which was particularly effective in reducing the ultrafine PNC, resulting in a different particle exposure load than outdoors. This study provides a detailed understanding of residential particle exposure in multiple homes, facilitating future studies to assess health effects in residential environments.Peer reviewe
Recommended from our members
Large-scale mapping of mutations affecting zebrafish development
BACKGROUND: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. RESULTS: We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. CONCLUSION: By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations
A Novel Modular Antigen Delivery System for Immuno Targeting of Human 6-sulfo LacNAc-Positive Blood Dendritic Cells (SlanDCs)
Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells.Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells.In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines
Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology
The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- …