395,034 research outputs found

    Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy.

    Get PDF
    The renin-angiotensin (Ang) system is important during placental development. Dysregulation of the renin-Ang system is important in preeclampsia (PE). Female rats transgenic for the human angiotensinogen gene crossed with males transgenic for the human renin gene develop the PE syndrome, whereas those of the opposite cross do not. We used this model to study the role of Ang II in trophoblast invasion, which is shallow in human PE but deeper in this model. We investigated the following groups: PE rats, opposite-cross rats, Ang II–infused rats (1000 ng/kg per day), and control rats. Ang II infusion increased only circulating Ang II levels (267.82 pg/mL), opposite cross influenced only uteroplacental Ang II (13.52 fmol/mg of protein), and PE increased both circulating (251.09 pg/mL) and uteroplacental (19.24 fmol/mg of protein) Ang II. Blood pressure and albuminuria occurred in the models with high circulating Ang II but not in the other models. Trophoblast invasion increased in PE and opposite-cross rats but not in Ang II–infused rats. Correspondingly, uterine artery resistance index increased in Ang II–infused rats but decreased in PE rats. We then studied human trophoblasts and villous explants from first-trimester pregnancies with time-lapse microscopy. Local Ang II dose-dependently increased migration by 75%, invasion by 58%, and motility by 282%. The data suggest that local tissue Ang II stimulates trophoblast invasion in vivo in the rat and in vitro in human cells, a hitherto fore unrecognized function. Conceivably, upregulation of tissue Ang II in the maternal part of the placenta represents an important growth factor for trophoblast invasion and migration

    Adenoviral delivery of angiotensin-(1-7) or angiotensin-(1-9) inhibits cardiomyocyte hypertrophy via the mas or angiotensin Type 2 receptor

    Get PDF
    The counter-regulatory axis of the renin angiotensin system peptide angiotensin-(1-7) [Ang-(1-7)] has been identified as a potential therapeutic target in cardiac remodelling, acting via the mas receptor. Furthermore, we recently reported that an alternative peptide, Ang-(1-9) also counteracts cardiac remodelling via the angiotensin type 2 receptor (AT(2)R). Here, we have engineered adenoviral vectors expressing fusion proteins which release Ang-(1-7) [RAdAng-(1-7)] or Ang-(1-9) [RAdAng-(1-9)] and compared their effects on cardiomyocyte hypertrophy in rat H9c2 cardiomyocytes or primary adult rabbit cardiomyocytes, stimulated with angiotensin II, isoproterenol or arg-vasopressin. RAdAng-(1-7) and RAdAng-(1-9) efficiently transduced cardiomyocytes, expressed fusion proteins and secreted peptides, as demonstrated by western immunoblotting and conditioned media assays. Furthermore, secreted Ang-(1-7) and Ang-(1-9) inhibited cardiomyocyte hypertrophy (Control = 168.7±8.4 µm; AngII = 232.1±10.7 µm; AngII+RAdAng-(1-7) = 186±9.1 µm, RAdAng-(1-9) = 180.5±9 µm; P<0.05) and these effects were selectively reversed by inhibitors of their cognate receptors, the mas antagonist A779 for RAdAng-(1-7) and the AT(2)R antagonist PD123,319 for RAdAng-(1-9). Thus gene transfer of Ang-(1-7) and Ang-(1-9) produces receptor-specific effects equivalent to those observed with addition of exogenous peptides. These data highlight that Ang-(1-7) and Ang-(1-9) can be expressed via gene transfer and inhibit cardiomyocyte hypertrophy via their respective receptors. This supports applications for this approach for sustained peptide delivery to study molecular effects and potential gene therapeutic actions

    A higher Angiogenin expression is associated with a non-nuclear Maspin location in laryngeal carcinoma

    Get PDF
    Objectives. In numerous malignancies, angiogenin (ANG) and Maspin are important proangiogenic and antiangiogenic regulators, respectively. The aim of this study was to identify potential relationships between the biological roles of these two proteins in laryngeal squamous cell carcinoma (LSCC). Methods. Immunohistochemical staining for ANG and Maspin was performed on specimens from 76 consecutive LSCC patients treated with surgery alone, considering the subcellular pattern of Maspin expression. Univariate and multivariate statistical models were used for prognostic purposes. Results. On univariate analysis, a different level of ANG expression was seen for patients stratified by subcellular Maspin expression pattern: the mean ANG expression was higher in cases with a nonnuclear MASPIN expression than in those with a nuclear pattern (P=0.002). Disease-free survival (DFS; in months) differed significantly when patients were stratified by N stage (P=0.01). Patients whose Maspin expression was nonnuclear (i.e., it was cytoplasmic or there was none) had a significantly higher recurrence rate (P<0.001), and shorter DFS (P=0.01) than those with a nuclear Maspin pattern. The mean ANG expression was significantly higher in cases with loco-regional recurrent disease (P=0.007); and patients with an ANG expression 655.0% had a significantly shorter DFS than those with an ANG expression <5.0% (P=0.007). On multivariate analysis, ANG expression 655.0% was a significant, independent, negative prognostic factor in terms of DFS (P=0.041). Conclusion. Our results support the hypothesis that a higher ANG expression is associated with a nonnuclear Maspin expression pattern in patients with LSCC. Further studies are needed to clarify the relationship between the ANG and Maspin pathways, and their potential diagnostic and therapeutic role in LSCC

    Gene therapy with Angiotensin-(1-9) preserves left ventricular systolic function after myocardial infarction

    Get PDF
    BACKGROUND: Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin angiotensin system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic minipump in mice. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). OBJECTIVES: To evaluate effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post infarction. METHODS: C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular (LV) pressure-volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation–contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff perfused whole heart model. RESULTS: Gene delivery of Ang-(1-9) significantly reduced sudden cardiac death post-MI. Pressure–volume measurements revealed complete restoration of end systolic pressure, ejection fraction, end systolic volume and the end diastolic pressure–volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and increasing contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism. CONCLUSIONS: Our novel findings show that Ang-(1-9) gene therapy preserves LV systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) has a direct effect on cardiomyocyte 3 calcium handling through a protein kinase A-dependent mechanism. These data highlight Ang-(1-9) gene therapy as a potential new strategy in the context of MI

    Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodeling

    Get PDF
    The renin angiotensin system (RAS) is integral to cardiovascular physiology, however, dysregulation of this system largely contributes to the pathophysiology of cardiovascular disease (CVD). It is well established that angiotensin II (Ang II), the main effector of the RAS, engages the angiotensin type 1 receptor and promotes cell growth, proliferation, migration and oxidative stress, all processes which contribute to remodeling of the heart and vasculature, ultimately leading to the development and progression of various CVDs including heart failure and atherosclerosis. The counter-regulatory axis of the RAS, which is centered on the actions of angiotensin converting enzyme 2 (ACE2) and the resultant production of angiotensin-(1-7) (Ang-(1-7) from Ang II, antagonizes the actions of Ang II via the receptor Mas, thereby providing a protective role in CVD. More recently, another ACE2 metabolite, Ang-(1-9), has been reported to be a biologically active peptide within the counter-regulatory axis of the RAS. This review will discuss the role of the counter-regulatory RAS peptides, Ang-(1-7) and Ang-(1-9) in the cardiovascular system, with a focus on their effects in remodeling of the heart and vasculature

    Transient receptor potential melastatin 7 cation channel kinase new player in angiotensin II–induced hypertension

    Get PDF
    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg2+)/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase–deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg2+ was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P&lt;0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II–infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule–1 expression was increased in Ang II–infused TRPM7 kinase–deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II–treated groups. In TRPM7 kinase–deficient mice, Ang II–induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II–induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II–induced hypertension and associated vascular and target organ damage

    Angiotensin-(1-7) increases osmotic water permeability in isolated toad skin

    Get PDF
    Angiotensin-(1-7) (Ang-(1-7)) increased osmotic water permeability in the isolated toad skin, a tissue with functional properties similar to those of the distal mammalian nephron. Concentrations of 0.1 to 10 μM were effective, with a peak at 20 min. This effect was similar in magnitude to that of frog skin angiotensin II (Ang II) and oxytocin but lower than that of human Ang II and arginine-vasotocin. The AT2 angiotensin receptor antagonist PD 123319 (1.0 μM) fully inhibited the response to 0.1 μM Ang-(1-7) but had no effect on the response to Ang II at the same concentration. The specific receptor antagonist of Ang-(1-7), A-779, was ineffective in blocking the response to Ang-(1-7) and to frog skin Ang II. The AT1 receptor subtype antagonist losartan, which blocked the response to frog skin Ang II, was ineffective in blocking the response to Ang-(1-7). The present results support the view of an antidiuretic action of Ang-(1-7) in the mammalian nephron.Fil: Santos, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Jerez, Susana Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Peral, Maria de Los Angeles. Universidad Nacional de Tucumán. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Coviello, Alfredo. Universidad Nacional de Tucumán. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin

    c-Src inhibition improves cardiovascular function but not remodeling or fibrosis in Ang II-induced hypertension

    Get PDF
    c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II–induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II–infused (400 ng/kg/min) mice in which c-Src was partially deleted (c-Src+/−) and in wild-type (WT, c-Src+/+) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in c-Src+/− and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and c-Src+/− mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II–infused WT mice was normalized in c-Src+/− mice. Increased oxidative stress (plasma thiobarbituric acid–reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II–infused WT mice was attenuated in c-Src–deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal–regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and c-Src+/− mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in c-Src+/− and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II–dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling
    • …
    corecore