125 research outputs found
JRA3 Electromagnetic Calorimeter Technical Design Report
This report describes the design of the prototype for an Silicon Tungsten electromagnetic calorimeter with unprecedented high granularity to be operated in a detector at the International Linear Collider (ILC). The R&D for the prototype is co-funded by the European Union in the FP6 framework within the so called EUDET project in the years 2006-2010. The dimensions of the prototype are similar to those envisaged for the final detector. Already at this stage the prototype features a highly compact design. The sensitive layers, the Very Front End Electronics serving 64 channels per ASIC and copper plates for heat draining are integrated within 2000 μm
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter
The spatial development of hadronic showers in the CALICE scintillator-steel
analogue hadron calorimeter is studied using test beam data collected at CERN
and FNAL for single positive pions and protons with initial momenta in the
range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron
showers are parametrised with two-component functions. The parametrisation is
fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics
lists from Geant4 version 9.6. The parameters extracted from data and simulated
samples are compared for the two types of hadrons. The response to pions and
the ratio of the non-electromagnetic to the electromagnetic calorimeter
response, h/e, are estimated using the extrapolation and decomposition of the
longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to
JINS
Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter
A first prototype of a scintillator strip-based electromagnetic calorimeter
was built, consisting of 26 layers of tungsten absorber plates interleaved with
planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a
positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's
performance is presented in terms of the linearity and resolution of the energy
measurement. These results represent an important milestone in the development
of highly granular calorimeters using scintillator strip technology. This
technology is being developed for a future linear collider experiment, aiming
at the precise measurement of jet energies using particle flow techniques
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter
A detailed study of hadronic interactions is presented using data recorded
with the highly granular CALICE silicon-tungsten electromagnetic calorimeter.
Approximately 350,000 selected negatively charged pion events at energies
between 2 and 10 GeV have been studied. The predictions of several physics
models available within the Geant4 simulation tool kit are compared to this
data. A reasonable overall description of the data is observed; the Monte Carlo
predictions are within 20% of the data, and for many observables much closer.
The largest quantitative discrepancies are found in the longitudinal and
transverse distributions of reconstructed energy.Comment: 28 pages, 24 figures, accepted for publication in NIM
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
- …