1,052 research outputs found

    An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system

    Get PDF
    GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported

    Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-η muon system

    Get PDF
    Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the 1.6 < vertical bar eta vertical bar < 2.4 endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the prototypes at the beam tests will be discussed

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe

    Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV

    Get PDF
    National Science Foundation (U.S.

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF
    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions

    Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV

    Get PDF
    info:eu-repo/semantics/publishe

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore