717 research outputs found

    Predicting the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes

    Get PDF
    For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth, which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the performance of existing or engineered microbial functions

    Creating the 2011 area classification for output areas (2011 OAC)

    No full text
    This paper presents the methodology that has been used to create the 2011 Area Classification for Output Areas (2011 OAC). This extends a lineage of widely used public domain census only geodemographic classifications in the UK. It provides an update to the successful 2001 OAC methodology, and summarizes the social and physical structure of neighbourhoods using data from the 2011 UK Census. We also present the results of a user engagement exercise that underpinned the creation of an updated methodology for the 2011 OAC. The 2011 OAC comprises 8 Supergroups, 26 Groups and 76 Subgroups. Finally, we present an example of the results of the classification in Southampton

    Perspectives on open access high resolution digital elevation models to produce global flood hazard layers

    Get PDF
    Global flood hazard models have recently become a reality thanks to the release of open access global digital elevation models, the development of simplified and highly efficient flow algorithms, and the steady increase in computational power. In this commentary we argue that although the availability of open access global terrain data has been critical in enabling the development of such models, the relatively poor resolution and precision of these data now limit significantly our ability to estimate flood inundation and risk for the majority of the planet’s surface. The difficulty of deriving an accurate ‘bare-earth’ terrain model due to the interaction of vegetation and urban structures with the satellite-based remote sensors means that global terrain data are often poorest in the areas where people, property (and thus vulnerability) are most concentrated. Furthermore, the current generation of open access global terrain models are over a decade old and many large floodplains, particularly those in developing countries, have undergone significant change in this time. There is therefore a pressing need for a new generation of high resolution and high vertical precision open access global digital elevation models to allow significantly improved global flood hazard models to be developed

    A climate-conditioned catastrophe risk model for UK flooding

    Get PDF
    We present a transparent and validated climate-conditioned catastrophe flood model for the UK, that simulates pluvial, fluvial and coastal flood risks at 1 arcsec spatial resolution (∼ 20–25 m). Hazard layers for 10 different return periods are produced over the whole UK for historic, 2020, 2030, 2050 and 2070 conditions using the UK Climate Projections 2018 (UKCP18) climate simulations. From these, monetary losses are computed for five specific global warming levels above pre-industrial values (0.6, 1.1, 1.8, 2.5 and 3.3 ∘C). The analysis contains a greater level of detail and nuance compared to previous work, and represents our current best understanding of the UK's changing flood risk landscape. Validation against historical national return period flood maps yielded critical success index values of 0.65 and 0.76 for England and Wales, respectively, and maximum water levels for the Carlisle 2005 flood were replicated to a root mean square error (RMSE) of 0.41 m without calibration. This level of skill is similar to local modelling with site-specific data. Expected annual damage in 2020 was GBP 730 million, which compares favourably to the observed value of GBP 714 million reported by the Association of British Insurers. Previous UK flood loss estimates based on government data are ∼ 3× higher, and lie well outside our modelled loss distribution, which is plausibly centred on the observations. We estimate that UK 1 % annual probability flood losses were ∼ 6 % greater for the average climate conditions of 2020 (∼ 1.1 ∘C of warming) compared to those of 1990 (∼ 0.6 ∘C of warming), and this increase can be kept to around ∼ 8 % if all countries' COP26 2030 carbon emission reduction pledges and “net zero” commitments are implemented in full. Implementing only the COP26 pledges increases UK 1 % annual probability flood losses by 23 % above average 1990 values, and potentially 37 % in a “worst case” scenario where carbon reduction targets are missed and climate sensitivity is high.</p

    The AirSpeck family of static and mobile wireless air quality monitors

    Get PDF

    Black Hole Deconstruction

    Get PDF
    A D4-D0 black hole can be deconstructed into a bound state of D0 branes with a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We find a scaling limit in which the disk and core drop inside an AdS_2 throat. Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a second scaling region describing the D6-anti-D6 pair. It is shown that the M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in the far asymptotic region reduce to global, rather than Poincare, time translations in this core AdS_3. We further find that the quantum mechanical ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page

    A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data

    Get PDF
    We have developed a statistical gap-filling method adapted to the specific coverage and prop-erties of observed fugacity of surface ocean CO2(fCO2). We have used this method to interpolate the Sur-face Ocean CO2Atlas (SOCAT) v2 database on a 2.5832.58 global grid (south of 708N) for 1985–2011 atmonthly resolution. The method combines a spatial interpolation based on a ‘‘radius of influence’’ to deter-mine nearby similar fCO2values with temporal harmonic and cubic spline curve-fitting, and also fits long-term trends and seasonal cycles. Interannual variability is established using deviations of observations fromthe fitted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on thespatial and temporal range of the interpolation. Tests of the method using model data show that it performsas well as or better than previous regional interpolation methods, but in addition it provides a near-globaland interannual coverage
    corecore