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Abstract 8 

Global flood hazard models have recently become a reality thanks to the release of open access global 9 

digital elevation models, the development of simplified and highly efficient flow algorithms, and the 10 

steady increase in computational power.  In this commentary we argue that although the availability of 11 

open access global terrain data has been critical in enabling the development of such models, the 12 

relatively poor resolution and precision of these data now limit significantly our ability to estimate flood 13 

inundation and risk for the majority of the planet’s surface.  The difficulty of deriving an accurate ‘bare-14 

earth’ terrain model due to the interaction of vegetation and urban structures with the satellite-based 15 

remote sensors means that global terrain data are often poorest in the areas where people, property (and 16 

thus vulnerability) are most concentrated.  Furthermore, the current generation of open access global 17 

terrain models are over a decade old and many large floodplains, particularly those in developing 18 

countries, have undergone significant change in this time.  There is therefore a pressing need for a new 19 

generation of high resolution and high vertical precision open access global digital elevation models to 20 

allow significantly improved global flood hazard models to be developed. 21 

 22 

Article 23 

Around the turn of the millennium, high quality two dimensional hydraulic models capable of 24 

simulating the dynamics of flood inundation became a reality at the reach scale as a result of faster 25 

computers, improved algorithms (Bates & De Roo 2000; Bradford & Sanders 2002; Bradbrook et al. 26 
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2004) and new forms of rapidly-collected remotely sensed digital elevation models (DEMs) (Bates 27 

2004; Marks & Bates 2000; Bates et al. 2003; Cobby et al. 2001; Sanders 2007).  Of particular value 28 

to hydraulic modellers in developed countries was the commencement of routine LIDAR collection 29 

due to its high horizontal and vertical precision and accuracy, its ability to penetrate vegetation cover 30 

and its reduced susceptibility to scatter and shadowing relative to other forms of remotely sensed 31 

elevation data such as Interferometric Synthetic Aperture Radar (InSAR) (Bates 2004).  These three 32 

key properties made it ideally suited to the creation of ‘bare-earth’ Digital Terrain Models (DTMs), a 33 

type of DEM in which surface features such as vegetation and built structures are removed to leave, as 34 

the name suggests, a three dimensional representation of the bare-earth surface.  Such data are ideally 35 

suited for the purposes of flood hazard simulation using hydraulic models, and form the basic datasets 36 

from which developed world flood hazard layers, such as the Federal Emergency Management 37 

Agency (FEMA) flood maps in the USA, and the Environment Agency Flood Maps in the UK, are 38 

produced.   39 

Whilst there have been significant advances in the models and data available for relatively small scale 40 

modelling of flood inundation where high quality terrain data exist, the computational and data costs 41 

associated with such models tends to restrict their application to populated areas in wealthier nations. 42 

Furthermore, due to the potential impact on property prices and local economies, local or national 43 

authorities may be reluctant to release the results of such models even where they do exist.  However, 44 

flood risk is very clearly a global problem and, consequentially, a number of research and commercial 45 

groups are currently working on the development of flood hazard models at the global scale (Ward et 46 

al. 2015; Winsemius et al. 2013; Hirabayashi et al. 2013; Hallegatte et al. 2013; Sampson et al. 2015).  47 

Projections of rapidly escalating economic losses due to flooding (Hallegatte et al. 2013) and the 48 

United Nations (UN) adoption of both the Sendai Framework for Disaster Risk Reduction (United 49 

Nations General Assembly 2015) and the Warsaw International Mechanism for Loss and Damage 50 

Associated with Climate Change Impacts (United Nations Framework Convention on Climate Change 51 

2013) provide clear motivation for the development of global flood risk assessments by both 52 

commercial and governmental purposes.  Much like the earlier development of reach scale models, 53 
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these new models are becoming tractable as a result of further increases in computational power and 54 

software parallelisation (Neal et al. 2010; Lamb et al. 2009), algorithmic improvements (Bates et al. 55 

2010), and emerging global datasets (Elvidge et al. 2007; Lehner et al. 2008; Smith et al. 2015; Jarvis 56 

et al. 2008; Andreadis et al. 2013; Yamazaki et al. 2014).  The data challenges are particularly 57 

onerous because, whereas at the reach scale most of the required ‘secondary’ spatial data other than 58 

the DEM (such as river locations, channel geometries and flood defences) can viably be obtained 59 

using manual survey or are contained in the data produced by national mapping agencies, at the global 60 

scale all such data must be derived in an automated or semi-automated manner from remotely sensed 61 

data.  The DEM is the core dataset from which many of these secondary datasets are derived and, as 62 

we argue in this perspective, it is the limited quality of the present generation of global DEMs that 63 

presents the greatest challenge to flood inundation modellers today. 64 

Although a number of free and commercial global DEMs exist, two in particular have received the 65 

majority of attention from flood modellers: the Shuttle Radar Topography Mission (SRTM) (Rabus et 66 

al. 2003; Farr et al. 2007) DEM and the Advanced Spaceborne Thermal Emission and Reflection 67 

Radiometer (ASTER) (Abrams 2000) DEM, and their respective derivatives (Jarvis et al. 2008; 68 

Kobrick 2013; Fujisada et al. 2012).  These data sets are popular because they are open access and 69 

offer greater levels of detail than the previous generation of open access DEMs (such as ACE GDEM 70 

(Berry et al. 2000), GLOBE and GTOPO30) due to their greatly increased resolutions.  For example, 71 

ASTER and SRTM have ground spatial resolutions of 1 arc-seconds (~30 m at the equator 72 

respectively, compared to ~30 arc-seconds (~1 km) for the previous generation DEMs.  A number of 73 

studies (Hirt et al. 2010; Rexer & Hirt 2014; Jing et al. 2013; Jarihani et al. 2015) have compared the 74 

SRTM and ASTER DEMs across a range of locations globally to assess their applicability to 75 

hydraulic models (e.g. Sanders 2007), and despite its lower nominal resolution it is SRTM – 76 

particularly the void-filled CGIAR-CSI version 4 variant (Jarvis et al. 2008) -  that has emerged as the 77 

favoured choice. This is due to SRTM’s greater feature resolution, reduced number of artefacts and 78 

lower noise than ASTER, particularly in the flatter areas of concern to flood modellers (Jing et al. 79 

2013; Rexer & Hirt 2014).  The prohibitive cost and restricted rights associated with commercial 80 
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DEMs (such as the Intermap Nextmap® World 10TM and World 30TM, and Airbus WorldDEMTM, data 81 

sets) restricts significantly the application of such products.  This results in limited (or no) public and 82 

independent validation of commercial DEMs, a lack of independent studies comparing them to other 83 

DEMs, and a lack of the types of derived datasets, such as global hydrography data, that have 84 

emerged from their open access counter-parts. 85 

User generated ‘secondary’ datasets derived from global topography offer a valuable resource for a 86 

range of activities and can been directly attributed to the production of open access global DEMs.  87 

From a flood modelling perspective perhaps the most valuable example is the Hydrosheds global 88 

hydrography dataset (Lehner et al. 2008).  This dataset was produced by executing a number of 89 

hydrology-based GIS operations over a suitably void-filled SRTM dataset, and contains layers such as 90 

flow direction maps, river networks (with upstream accumulation areas) and catchment masks.  The 91 

Hydrosheds data has been used as the basis for a number of large scale  hydrology and river routing 92 

models (Wood et al. 2011; Yamazaki et al. 2013; Sampson et al. 2015; Gong et al. 2011; Schumann et 93 

al. 2013; Alfieri et al. 2013) because, in conjunction with the SRTM DEM, it provides a framework 94 

within which hydraulic model structures can be assembled.  The availability of such datasets reduces 95 

significantly the total workload for groups attempting to construct global models, making previously 96 

intractable problems manageable for the first time and allowing developers the time to focus on other 97 

critical aspects such as efficient numerical schemes and automation. 98 

However, significant as these achievements may be, the current generation of global DEMs have 99 

serious limitations that heavily restrict the skill of models developed around them.  Taking SRTM as 100 

an example, the critical limitations of the dataset are: a) poor vertical accuracy due to noise or 101 

‘speckle’ (Rodriguez et al. 2006); b) the difficulty in obtaining a bare-earth DTM due to radar 102 

reflection from the top of the vegetation canopy; c) the inability to resolve street-scale features in 103 

urban areas, resulting in large positive elevation biases in urban areas; d) other systematic errors, such 104 

as ‘striping’, that are a result of the pitch and yaw of the spacecraft during the data collection phase 105 

(Rodriguez et al. 2006); and e) the inability of SRTM to resolve the bathymetry of water bodies due to 106 

radar reflection from the water surface.  These limitations have a highly detrimental effect on both 107 
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derived hydrography datasets and the simulated flow dynamics of flood hazard models.  There is a 108 

tendency amongst many users to fixate on the nominal horizontal resolution of DEMs, but for flood 109 

modelling it is the vertical accuracy and precision that is critical.  This is because the dominant 110 

control on the flow of water in a hydraulic model, as in the real world, is the change in elevation of 111 

the topography; after all, it is gravity that moves water downslope.  The four critical limitations of the 112 

SRTM dataset outlined above all concern the vertical accuracy and precision of the DEM, and all can 113 

affect simulated flow dynamics adversely.  Vertical noise within a DEM will fundamentally affect the 114 

propagation of a floodwave because pixels will serve as blockages or sinks.  Where noise is random, it 115 

can be reduced by resampling the DEM grid to a coarser resolution as the positive and negatively 116 

biased pixels cancel when aggregated onto the larger grid.  This approach reduces noise, but also 117 

reduces the resolution of the DEM and limits its ability to represent small scale features.  More 118 

challenging still are the elevation biases imparted by vegetation and urban areas.  Such biases can be 119 

10s of metres and, if left uncorrected, forests and urban areas act as walls or islands that block the 120 

flow of water across a floodplain and (erroneously) never flood themselves within the model.  As 121 

many flood hazard models are used to help assess flood risk, a model that identifies urban areas as 122 

always being safe is of little value.  Finally, the systematic ‘striping’ caused by the pitch and yaw of 123 

the Space Shuttle itself create false wave like artefacts on the DEM that can corrupt the modelled flow 124 

of water across the DEM.  It also needs to be noted that SRTM is now quite old (the data were 125 

collected in February 2000) and many of the world’s floodplains have undergone dramatic change 126 

since, mostly because of human development.  This is particularly true in developing countries, and 127 

there is an increasingly pressing need for a new global topographic mapping mission producing open 128 

data. 129 

The effect of systematic elevation errors on derived hydrography datasets are equally severe.  When a 130 

flow direction map is calculated from the DEM, erroneously elevated surfaces caused by areas of 131 

vegetation or urbanisation cause errors in the calculated flow directions.  This in turn leads to 132 

incorrect flow accumulation calculations and stream network locations.  The effect can be severe in 133 

the case of large forests and cities, leading to grossly misplaced river channels and even missing or 134 
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invented connections between channels and resultant errors in catchment delineation.  The most 135 

obvious of these errors can be rectified by painstaking manual editing, as was done for the 136 

Hydrosheds dataset (Lehner et al. 2008), but many errors remain that can be hard to identify in a 137 

systematic manner.  These errors impart structural errors on models that rely upon them for their 138 

construction, compounding the DEM-induced errors in flow dynamics discussed above. 139 

The errors discussed above have such a marked effect on flood hazard simulations that it has been 140 

necessary for practitioners to develop methods that attempt to reduce their severity.  One example of 141 

this involves attempts to remove vegetation bias from SRTM to produce a bare-earth DTM in forested 142 

areas (Baugh et al. 2013).  This poses a substantial challenge as the necessary data content is not 143 

present in the SRTM data itself, meaning that other datasets are required to quantify the height and 144 

location of the vegetation (Simard et al. 2011).  Furthermore, because the extent to which the radar 145 

pulse penetrates the canopy depends on the density of the vegetation (it is not sufficient to assume the 146 

return is always from the top of the canopy), a spatial measure of vegetation density is required.  147 

Finally, elevation control points (e.g. ICESat laser altimeter data) are necessary for calibration and 148 

validation of the algorithm.  Such algorithms can offer significant improvement, as demonstrated in 149 

figure 1.  However, their effectiveness is limited by the accuracy and precision of the vegetation 150 

datasets, which are themselves uncertain, and non-negligible residual errors in the resultant bare-earth 151 

DTM are unavoidable; examples of such errors are provided in figure 2 below. 152 Provisional



 153 

 154 

Figure 1: Comparison of raw SRTM DEM to LIDAR (top left) and corrected SRTM to LIDAR (top centre) for Western 155 

Belize.  Cross-sections A, B and C transect the Belize River valley and compare the LIDAR elevation profile (black) to the 156 

uncorrected SRTM profile (green) and corrected SRTM profile (blue). 157 

 158 

Figure 1 shows reduced vertical error following the systematic removal of vegetation bias by 159 

comparing corrected and uncorrected SRTM DEMs to a high precision bare-earth DTM produced 160 

using 1 m aerial LIDAR data resampled to SRTM resolution.  The algorithm employs satellite 161 

vegetation height and density datasets (Simard et al. 2011; Schwarz et al. 2004) that estimate 162 

vegetation location, height and density to produce  an estimated bias layer which is then removed 163 

from the SRTM DEM and yields a change in bias from 15.8 to -0.1 m.(Sampson et al. 2015).  Figure 164 
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2 demonstrates the effect of this correction on a simulation of a category 5 storm surge event along 165 

the Belize coast.  In the uncorrected DEM, the vegetation acts as a virtual ‘sea wall’, preventing the 166 

surge waters from penetrating inland to flood areas known to be at risk such as the Belizean coastal 167 

mangroves.  With the vegetation removed, the coastal wetlands flood, providing a far more plausible 168 

realisation of the inundation that one would expect for an event of this magnitude.  However, while 169 

the improvement is obvious, the transects in figure 1 shows that significant differences still exist 170 

between the corrected SRTM DEM and the LIDAR-derived DEM at the local scale due to limitations 171 

in the correction method.  One key limitation is the resolution of the vegetation datasets (~ 1 km for 172 

the vegetation heights and ~250 m for the vegetation density).  The yellow circles in figure 2 show 173 

areas where the vegetation removal tool failed to resolve and remove ~100m wide strips of mangroves 174 

from the SRTM DEM.  While the overall removal still allowed water behind the mangrove ‘wall’, this 175 

is an example of typical residual vegetation artefacts.  It is also known that most of Belize City should 176 

be flooded (Belize government engineers and planners, personal communication); however dry areas 177 

remain due to the residual urban artefacts even after the urban filter is applied to the SRTM DEM 178 

(purple circle in figure 2).  179 
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  180 

 181 

Figure 2: Differences in flood extent for a category 5 hurricane storm surge along the Belizean coast using raw vs. vegetation 182 

bias corrected SRTM DEMs 183 

There is therefore a clear need for an improved open-access global DEM for global flood hazard 184 

modelling.  The value of high resolution terrain data with good vertical precision has long been 185 

recognised at the local scale by the hydraulic modelling community (Fewtrell et al. 2008; Marks & 186 

Bates 2000; Bates et al. 2003; Horritt & Bates 2001; Yu & Lane 2011; Yu & Lane 2006), and the 187 

benefits for global scale models may be even greater.  This is because reach scale models often rely 188 

upon manual correction of the DEM using secondary data sources such as surveyed river cross 189 

Provisional



sections; such corrections are not possible on a systematic basis at the global scale because suitable 190 

secondary data does not exist for most rivers, and because the scale of the task would render it 191 

unfeasible.  The DEM is therefore the only source of data used to determine river locations and river 192 

bank elevations for most locations within a global model, and it is reasonable to expect any 193 

improvements to this dataset to yield substantial improvements to model performance.  For example, 194 

the representation of flood defences within flood hazard models is known to be critically important 195 

(Brandimarte & Di Baldassarre 2012; te Linde et al. 2011; Wesselink et al. 2013), but current large 196 

scale models are either forced to assume total failure of defences, or adopt heavily simplified 197 

approaches such as masking off urban areas for event scales below a ‘defence standard’ inferred from 198 

socioeconomic data (Feyen et al. 2012)  A global DEM of increased horizontal resolution and vertical 199 

precision would offer improved representation of micro-topography; if the quality is able to approach 200 

that of an aerial LIDAR DEM (> 5 m spatial resolution and 1 m vertical precision), features such as 201 

large river levees could be resolved directly.  This would lead to the explicit representation of major 202 

defence features in large scale models, allowing an improved representation of the flood hazard in 203 

protected areas.  As even the finest aerial LIDAR DEMs fail to completely capture smaller defence 204 

features such as narrow defence walls it is unlikely that any foreseeable global DEM could capture all 205 

of the detail necessary for ultra-fine models (Gallien et al. 2014).  However, a high quality global 206 

DEM could act as a ‘base layer’ onto which local detail (potentially collected through crowd-sourced 207 

platforms such as OpenStreetMap) could be added.  Defences are not the only consideration either, as 208 

previous studies have shown a step change in model skill for urban areas when the DEM becomes 209 

able to resolve individual streets due to correct representation of floodplain connectivity (Fewtrell et 210 

al. 2008).  A final topic that should be mentioned is cost.  According to the Sampson et al. (2015) 211 

model, the African 1 in 100 year floodplain covers approximately 7% of the continental area.  Scaled 212 

to the globe, this gives an approximate 1 in 100 year floodplain area of 35 million km2.  Assuming 213 

some economies of scale, a collection cost of $200 per km2 is plausible and yields a global cost 214 

estimate of approximately $7 billion.  As the benefit of the highest resolution data would be most 215 

strongly felt in cities, which constitute <0.5% of the Earth’s land area (Schneider et al. 2009) but a 216 

much larger proportion of the flood risk, one way to significantly reduce the cost of producing such a 217 
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DEM would be to adopt a hybrid resolution approach where the highest resolution data are collected 218 

in urban areas and a lower resolution adopted for rural areas.  However, in the context of future 219 

annual flood loss estimates that exceed a trillion dollars (Hallegatte et al. 2013), the cost of collecting 220 

a high quality global DEM may be justifiable on the basis of its applicability to flood risk modelling 221 

alone.  222 

 223 

To conclude, high accuracy and precision DEM data are critical for skilful flood hazard modelling 224 

and the limitations with current open access DEM data sets limit significantly our ability to estimate 225 

flood inundation and risk for the majority of the planet’s surface.  There is a clear need (c.f. 226 

Schumann et al. 2014) for a concerted global effort to collect or collate a new open access DEM with 227 

~10m resolution and sub-metre scale vertical accuracy for use in a variety of applications.  Flood 228 

modelling is one such task, but better global DEM data would have wide value for governments, 229 

humanitarian organisations, NGOs and industry.   230 
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