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ABSTRACT: For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the
degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization
experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth,
which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood
at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In
contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen
restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at
which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and
explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy
that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of
genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine
experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict
genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important
advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the
performance of existing or engineered microbial functions.
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For many applications in microbial synthetic biology,
optimizing a desired function, such as biosynthesis via an

engineered metabolic pathway, requires careful and labor-
intensive optimization of the degree to which various genes are
expressed.1 Transgene copy number, genomic integration site,
promoter strength, translational efficiency, and culture
conditions all impact “function” in a manner that is difficult
to predict and typically requires high throughput screening2−4

or evolutionary selection for such properties.5 One challenge
for predicting such effects or even interpreting typical
characterization experiments is that in bacteria such as E. coli,
genome copy number varies widely across different phases of
growth, often exceeding eight copies per cell during portions of
a typical fermentation.6−9 Genomic replication also impacts

how and when endogenous genes are expressed from different
loci,10 and in addition, growth rate affects gene expression at a
global level.11 While such phenomena are relatively well-
understood at a mechanistic level and benefit from decades of
research in this area, there are important gaps in our
quantitative understanding of such processes that limit our
ability to predict or explain the impact of genomic copy number
variation on engineered biological functions.
In E. coli, upon which this discussion will focus, DNA

replication begins at the origin of replication, oriC,8 and is
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facilitated by DnaA.12 The initiation of replication is largely
regulated by DnaA, which accumulates at oriC via an ATP-
dependent process to alter the conformation of oriC and
recruits the helicase, DnaB, which initiates the process of
replication.13−15 Replication proceeds in both directions from
oriC and continues until termination, a process that is
coordinated by interactions between the protein Tus and one
of 10 Ter sequences along the genome.16 Tus complexes with
Ter sites in an asymmetric fashion, which enables the complex
to function as a direction-specific terminator of replication.
When a replication fork reaches a Tus complex from one
direction, the Tus complex will dissipate and replication will
continue.17 If the replication fork reaches the Tus complex
from the other direction, however, the Tus complex will remain
intact, inhibiting further replication until the opposite
replication fork is able to complete replication from the other
direction. Thus, the concentration of active (ATP-bound)
DnaA is generally understood to integrate the effects of cell size
and other aspects of cell state in order to regulate genome
replication, although these processes are only indirectly
connected to the regulation of cell division. Indeed, decoupling
the regulation of cell division and genome replication enables E.
coli to grow rapidly when nutrients are abundant. The minimal
time required to replicate the genome is about 40 min, but by
initiating multiple rounds of replication prior to cell division,
the doubling time can be substantially shorter than 40 min.8

The regulation of cell division in E. coli is less well
understood than is the regulation of DNA replication, but
regulation is strongly coupled to cell size,18 and a number of
essential regulators of cell division have been identified.19 The
first protein to localize at the point of division is FtsZ, a tubulin
homologue that forms a ring around the nucleoid of the cell.20

This ring can form well before the two distinct genomic copies
separate into distinct regions. The ring then complexes with the
membrane-bound ZipA, tethering the ring to the membrane in
preparation to pinch the membrane during division.21 This
leads to the recruitment of a number of proteins to form the
divisome, which contracts the membrane while actively
transporting chromosomes to opposite daughter cells to
complete the process of division.22 While the adaptive benefits
of such decoupling between genome replication and cell
division are well understood, this decoupling also presents
challenges for predicting both dynamics and intercellular
variations in genomic DNA content.
To address these issues, a number of theoretical models have

been developed to predict variations in genomic DNA content.
The most widely used model was first created in 1968 by
Cooper and Helmstetter (hereafter, CH model).23 The CH
model was the first to formally describe the relationship
between mass accumulation and chromosome dynamics of a
bacterium, and it explained, among other things, the
aforementioned dynamics associated with overlapping rounds
of genome replication.23 The central observation motivating the
CH model is that every DNA replication initiation event occurs
at a fixed ratio between the number of origins of replication
(copies of oriC) and the mass of the cell.24 To explain this
observation, the CH model separates the cell cycle into three
distinct phases. The “C” phase represents the time required to
complete one round of genomic DNA replication. Once the cell
completes at least one round of replication, the “D” phase
represents the period during which the cell then undergoes
segregation of the chromosomes into two daughter cells to
complete cell division. If the doubling time is greater than the

sum of the C and D periods, then another phase arises called
the “B” phase, which is simply the time required for the cell to
accumulate enough mass to initiate a new round of
replication.25 By combining the CH model with a probability
density function (PDF) describing the theoretical age
distribution of a population growing exponentially,26 the
DNA distributions of such a population can be calculated
using the growth rate, C and D times.27 This strategy has been
widely used to determine the C and D parameters, for example
by fitting simulated DNA distributions to experimentally
measured DNA distributions sampled from exponentially
growing cultures.28,29

However, outside the scope of exponential growth the
previously described PDF representing the age distribution of a
population is no longer valid, since the previous assumption of
unrestricted growth cannot be made. During a typical batch
fermentation, cells exiting exponential growth experience a
transition phase, a stationary phase, and finally a death phase,
during which growth limiting factors becoming increasingly
important. Furthermore, cells grown upon complex media may
exhibit multiple instances of such phases, as well as other
dynamics.27,29 To help explain growth restriction, various
mechanistic growth models have been proposed,30 each of
which is an extension of the Malthusian growth model with
context-specific parameters that restrict growth in ways that
may be loosely attributed to biological mechanisms.31,32

However, Malthusian models generally provide poor fits to
experimentally observed growth curves for a wide range of
growth conditions.33 Monod pioneered the early development
of empirical models that better fit experimental growth curves,
by mathematically linking the growth rate of a population of
cells to particular growth-limiting substrates.34,35 Except in the
case of idealized three phase growth curves, however, all such
models are generally highly inaccurate.36 Since the vast majority
of synthetic biology characterization experiments utilize batch
fermentations, such as shake flasks, and microtiter plate
cultures, which exhibit complex growth dynamics particularly
as cell densities become appreciable, new tools are required to
predict and evaluate genomic DNA content under such
conditions.30,36,37

To meet this need, we report a novel modeling strategy that
leverages agent-based simulation and high performance
computing to robustly predict the dynamics and heterogeneity
of genomic DNA content within bacterial populations across
variable growth regimes. We show that by directly feeding
routinely collected experimental data, such as optical density
(OD) time series, into our mechanistic simulations, our model
predicts genomic DNA distributions that accurately reproduce
those observed experimentally over a range of nonexponential
growth conditions.

■ RESULTS AND DISCUSSION
Agent-Based Simulation Generates a Heterogeneous

Multiphasic Growth (HMG) Simulator. Most simulations of
bacterial population dynamics start with a simple model of
growth, typically framed at the single cell level, which is then
expanded to predict the growth dynamics of populations.28,29,38

Our objectives are not well served by this approach, in that
from a bioengineering standpoint, it would be useful to have a
model that works in the reverse direction−starting from simple,
experimentally measured growth curves (OD vs time), such a
model would enable one to infer the growth dynamics of the
individual cells within such a population. To achieve this goal of
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describing chromosomal dynamics across a heterogeneous
population, we designed an agent-based simulation framework
termed the heterogeneous multiphasic growth (HMG)
simulator. This framework comprises two distinct innova-
tionsan “injection growth” mechanism and a novel agent-
based description of the bacterial cell cycle.
The “injection growth” mechanism was designed to enable us

to relate experimentally measured growth curves to the growth
of individual cells within the simulation (see Supporting
Information section I.2.3). To implement this mechanism, at
every time step, we calculate the population’s instantaneous
volumetric changes (where, in this case “volumetric” refers to
the collective cellular volume of the population), and distribute
the changes in volume equally among all members of a
population (assuming a well-mixed system). This mechanism
thus enables us to match the growth of simulated cells to the
growth of the measured population without restricting our
analysis to the limited window or assumption of balanced
growth, such that the injection growth model may be used
across various phases of growth.30,36,37 Because population
dynamics under exponential growth have been extensively
studied and robustly mathematically defined, we leverage this
knowledge to initiate our simulated population of cells such
that the simulated DNA distributions and cell states match
those expected for exponentially growing cells.6,23,38 In practice,
this requires us to first identify the section of the experimental
growth curve in which cells are growing exponentially, and we
developed a partially automated strategy for doing so (see
Supporting Information Figure S3). We then initiate our
simulations using this measured exponential growth rate, and
the model is advanced under conditions of Malthusian growth
to generate a population of simulated cells that represent a
distribution of states observed during exponential growth. We
hypothesized that if such an injection model were coupled to a
suitably mechanistic description of DNA replication and cell

division, it may be possible to predict genomic DNA
distributions beyond exponential phase growth (Figure 1).
The second innovation of the HMG simulator comprises a

novel agent-based model of the bacterial cell cycle, wherein the
growth and each individual cell in a population is simulated in
parallel. The central algorithm describing this model is
summarized in Figure 2. The advantage of performing
population simulations using this method is 2-fold. First,
biological noise can be accurately captured in a predictive and
mechanistically meaningful manner. Second, we can examine
the dynamics of individual cells in a population to elucidate
their role in the overall dynamics of a population, which
facilitates both model development and utilization. As
described above, the overall goal of our modeling framework
is to take an experimentally measured growth curve (OD vs
time) as an input and predict the dynamics and distributions in
genomic DNA content over time; therefore, we explicitly do
not attempt to predict growth as a function of any experimental
parameter.
After calculating the volume injection rate, each individual

cell of our agent-based simulation otherwise follows the
standard CH model, including the following key steps: (1)
When the volume of a cell reaches the critical initiation volume
(Vi), all oriC in that cell are deemed competent for replication
initiation (or “open”); (2) Replication at each oriC is
stochastically initiated to represent asynchronicity between
independent chromosomes as well as overlapping rounds of
replication events on a single chromosome; (3) When the C
period “timer” elapses for any replication event in a cell, the D
period segregation “timer” starts; (4) When the D period timer
elapses, the cell splits into two daughter cells, with each partially
or completely replicated chromosome being randomly assigned
to one daughter or the other in a symmetrical fashion. At the
time of cell division, new cell cycle parameters (C and D
timers) are assigned to each daughter cell and Gaussian noise is

Figure 1. Injection-based strategy for connecting the HMG simulator to empirical growth data. This cartoon summarizes the process by which
empirical growth data (e.g., a measured OD vs time curve) is used to “drive” the HMG simulator via the volume injection method, where the open
circles represent the sections of the growth curve where DNA distributions were measured. Thus, in this illustration, the simulation would contain
three independent steps: (1) The region of exponential growth is identified. This exponential growth rate is used to drive the HMG simulation from
a single cell inoculate to a diversified population of exponentially growing cells; (2) During postexponential growth, the OD curve is used to calculate
the rate at which the overall cell volume (of the population) is increasing (see Supporting Information section I.2.3); (3) At each time point, the
calculated rate of volumetric change (per cell) is “injected” into each cell in the population, each of which advances its cell state via the HMG
algorithm outlined in Figure 1. The dashed rectangles indicate that during each time step of the simulation, a random subset of 5000 cells is taken
forward into the subsequent time step of the simulation in order to keep simulations computationally tractable (see Supporting Information section
I.2.3 for additional discussion).

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.5b00217
ACS Synth. Biol. 2017, 6, 1131−1139

1133

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00217/suppl_file/sb5b00217_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00217/suppl_file/sb5b00217_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00217/suppl_file/sb5b00217_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00217/suppl_file/sb5b00217_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00217/suppl_file/sb5b00217_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.5b00217


applied (as illustrated by the gray boxes in Figure 1). To
validate our injection model framework, we fed previously
reported C and D parameters associated with a particular
growth rate into our HMG simulation and confirmed that the
DNA distribution predicted under conditions of exponential
growth matched those generated by a validated Monte Carlo
simulation of the canonical CH model38 (Figure S1).
Our HMG simulator also captures the fact that many

laboratory bacterial strains contain a mutant version of the recA
gene (recA1) which has greatly reduced DNA-dependent
ATPase activity,39 which is the case for the strain used in this
study (TOP10). As critical mass is reached, all oriC loci in the
cell open simultaneously, such that in a WT population of cells,
the vast majority of individual cells contain 1, 2, 4, 8, ··· (i.e.,
2n) chromosome copies per cell.25 Populations of recA1 cells,
on the other hand, contain individuals with whole numbers (1,
2, 3, 4, etc.) of chromosome copies per cell.40 Our current
understanding is that this phenomenon likely stems from a
dysfunctional DNA repair mechanism,40−42 although the exact
mechanisms by which the lack of functional RecA impacts the
replication and repair mechanism is still the subject of intensive
research43 (see extended discussion in Supporting Information
section I.3.2). Therefore, we decided to capture the impacts of
RecA deficiency by including only high-level consequences that

are generally believed to lead to the observed aberrant
chromosome copy number phenotype: in our simulation,
when DNA damage occurs in RecA-deficient cells, the inability
to repair this damage by homologous recombination results,
stochastically, in degradation of either the replicating strand or
the entire replicating chromosome (Figure S6). Although there
is no direct evidence that recA mutation-associated DNA
degradation varies with growth rate,40,44 there is evidence that
mutant recA phenotypes are exacerbated by faster growth rates,
so a reasonable explanation is that faster growth leads to more
replications forks, and therefore more stalled replication forks,
and therefore more instances in which lack of RecA leads to
DNA degradation.45

Parameter Optimization Allows Matching of the HMG
Simulator to Measured DNA Distributions from Shake
Flask Experiments. We next developed a strategy for
calibrating our HMG simulator to experimentally generated
growth curves that include both exponential and postexponen-
tial growth phases. When considering exponential growth under
various conditions, the times for replication (C period) and
segregation (D period) are highly correlated with growth
rate.29,38 Overall, as the growth rate decreases, both C and D
periods increase from some minimal value, and these

Figure 2. Heterogeneous multiphasic growth (HMG) simulation algorithm. This figure summarizes the algorithms used to advance our agent-based
simulation of bacterial growth. As described in the text and elaborated in Supporting Information section I.2.3, this algorithm marries our “injection”
model for driving growth based upon experimentally measured growth curves with either the original CH model of bacterial replication (ignoring the
dashed boxes) or an extended version of the CH model which incorporates the effects of recA mutation (including the dashed boxes). In each time
step of the simulation, each cell is advanced through the five indicated processes: (1) growth, (2) opening of origin(s) of replication, (3) DNA
replication and DNA degradation, (4) segregation, and (5) cell division. Gray boxes indicate the steps in the algorithm where noise is applied to the
cell cycle (see Supporting Information section I.4) (C, replication timer; D, segregation time; Vi, critical mass; dt, time step; Va, current cell mass;
OriC, origin of replication).
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relationships are relatively well-described by simple empirical
functions (see Supporting Information Figure S8).
To evaluate our HMG simulator against experimentally

measured DNA distributions, we first measured DNA content
across multiple phases and conditions of growth using the type
of shake flask cultures typically used for routine characterization
of engineered strains (Figures 3 and 4). As a base case
implementation of our HMG simulator, we calculated C and D
parameters using functions based upon analyzing exponential
growth,1 and in this base case, we omitted any description of
recA-related defects (Figure 2)29,38 (see HMG simulator
descriptions from ref 38 in the captions for Figures 3 and 4
and Supporting Information Figure S3). As expected, this base-
case simulation produced relatively close matches to the
experimental data during exponential growth and early stages of
the transition to the stationary phase (Figures 3 and 4).
However, as the population departs further from exponential
growth and approaches a stationary phase, these predictions
become increasingly inaccurate.
To improve upon these predictions for postexponential

growth, we next attempted to improve the HMG simulator in
several ways. First, we incorporated the simplified description
of recA-associated DNA degradation (see Supporting Informa-
tion section I.3). Next, we attempted to optimize both
parameters associated with this DNA degradation as well as

parameters for the functions relating C and D periods to
growth rate. To this end, we utilized a genetic algorithm (GA)
to fit simulation parameters to one subset of our data−
experimentally measured DNA distributions for TOP10 cells
grown in LB at two different shake rates (230 and 23 rpm)
(Figure 3). This updated and optimized HMG simulation
exhibited a 26.72% and 37.7% improvement in accuracy for
predicting measured DNA distributions for the 230 and 23 rpm
cases, respectively, as quantified by a similarity score (see
Supporting Information section I.5.1; lower scores denote a
closer fit to the data).
We next investigated whether the updated and optimized

HMG simulator could also predict genomic DNA dynamics for
cells grown under conditions not included in the training data
(i.e., as model validation), and to this end we examined cells
grown in M9 medium. As shown in Figure 4, the updated and
optimized HMG simulator generates excellent fits during both
exponential and postexponential growth, and the optimized
parameters provide a significantly better prediction of the
experimental data than was achieved using standard parameters
from the literature (increases in accuracy were 40.34% and
49.15% for cells shaken at 230 and 23 rpm, respectively, as
measured by a similarity score). This improvement in
performance is also readily visualized, qualitatively, by
comparing histograms corresponding to the data presented as

Figure 3. Training of the HMG simulator framework. The HMG simulator was “fed” growth curves for TOP10 cells grown in LB, shaken at 230 or
23 rpm (Figure S4), and simulated DNA distributions were compared with those which were measured empirically. The measured DNA
distributions shown here each represent a single experiment, each of which is representative of two or more independent experiments. The first
column within each heat map represents the exponential growth phase (indicated by the asterisk (∗)), and all subsequent time points represent
postexponential growth. The simulator was run using two different models: the first model was based upon a prior description of exponential
growth,38 which omits any consequences of recA mutation, and the second (updated and optimized) model incorporated our description of the
consequences of recA mutation with parametric optimization (see main text). Similarity scores indicate the degree to which each prediction matches
the observed DNA distribution, using a scoring function described in the Supporting Information section I.5.1 (lower scores represent better fits).
The solid lines on the two bottom panels represent the mean similarity score across the time course, and the shaded boxes represent the standard
deviation of these scores across the time course. Histograms corresponding to the heat maps shown here are presented in Figures S9 (LB 230 rpm)
and S10 (LB 23 rpm).
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heat maps in Figures 3 and 4, (Figures S9, S10, S11, and S12),
which clearly indicate the points at which the pure CH model,
run under the HMG simulator, breaks down.
The HMG Simulator Can Guide Construct Design and

Evaluation. To illustrate the potential usefulness of our model
as a design tool, we considered a scenario in which the designer
wishes to insert three novel genes into the E. coli genome, and
the HMG simulator is used to predict how insertion position
impacts gene dosage dynamics across various growth
conditions. For example, if these genes encoded three enzymes,
then such dynamics could substantially impact the relative
concentration of these enzymes relative to both one another
and to endogenous enzymes and other gene products. To this
end, we generated theoretical growth curves representing
different biologically realistic growth dynamics, and we used the
optimized HMG simulator to predict gene dosage dynamics
(Figure 5). The scenarios considered could represent fast and
slow growth, growth on heterogeneous substrates (e.g,
multiphase growth), and discontinuous growth conditions
such as might be observed during metabolic adaptation (e.g.,
start−stop). As expected, genes located closer to oriC exhibit
greater variation in mean copy number than do those distal
from oriC, since genes located closer to oriC are present at
higher copy numbers overall. While the simple fast and slow
growth conditions both exhibit straightforward dynamics

gene dosage decreases with decreasing growth rate and
approaches 1 at the stationary phasethe ratio between gene
copy numbers (both during and after exponential growth)
varies substantially as a function of genomic integration
locations. Moreover, during multiphase growth, which is
observed during most typical characterization experiments,
gene dosage (and relative gene dosage) varies substantially
between the two time frames corresponding to distinct rates of
exponential growth (0−200 min and 200−400 min). Finally,
the start−stop growth conditions result in dramatic spikes in
gene dosage as simulated cultures exited intermediate “pauses”
to resume rapid growth.
Each of these examples suggests strategies by which a

synthetic biology practitioner might make use of the HMG
simulator. As a hypothesis generation tool, the HMG simulator
may be used to evaluate whether gene dosage may plausibly
explain why an engineered function or pathway behaves
differently under different growth regimes. Conversely, the
HMG simulator may be used to design experiments to probe
how gene dosage impacts the performance of a particular
function. Ultimately, the HMG simulator may be paired with
other design tools to facilitate the design of novel functions that
operate in a desirable fashion over a range of growth
conditions.

Figure 4. Validation of the HMG simulator framework. The HMG simulator was “fed” growth curves for TOP10 cells grown in M9, shaken at 230
or 23 rpm (Figure S4), and simulated DNA distributions were compared with those which were measured empirically. The measured DNA
distributions shown here each represent a single experiment, each of which is representative of two or more independent experiments. The first
column within each heat map represents the exponential growth phase (indicated by an asterisk (∗)), and all subsequent time points represent
postexponential growth. The simulator was run using two different models: the first model was based upon a prior description of exponential
growth,38 which omits any consequences of recA mutation, and the second (updated and optimized) model incorporated our description of the
consequences of recA mutation with parameters optimized based upon growth in LB (i.e., using the same updated and optimized model described in
Figure 3). Similarity scores indicate the degree to which each prediction matches the observed DNA distribution, using a scoring function described
in the Supporting Information section I.5.1 (lower scores represent better fits). The solid lines on the two bottom panels represent the mean
similarity score across the time course, and the shaded boxes represent the standard deviation of these scores across the time course. Histograms
corresponding to the heat maps shown here are presented in Figures S11 (M9 230 rpm) and S12 (M9 23 rpm).
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■ CONCLUSIONS

This investigation developed and validated a novel modeling
approach to meet the need for synthetic biologists to be able to
predict and evaluate the impact of genomic (and gene locus)
copy number variation across a population of bacterial cells and
across variable growth regimes. The results reported here have
validated the overall HMG simulation strategy, and the
injection growth model upon which it is based. Although we
observed that a single calibrated version of the HMG simulator
could make accurate predictions across a range of conditions,
some conditions resulted in lower prediction accuracy for
reasons that are not yet clear. Thus, further investigations are
required to determine the extent to which any set of model
calibrations enables predictions across genotypes, growth
conditions, and other perturbations such as plasmid and
transgene load. Ultimately, we expect that the HMG simulator
will provide a powerful tool for the evaluation and design of
synthetic microbial functions that perform robustly across a
range of growth conditions (all software is freely available from
the authors upon request).

■ MATERIALS AND METHODS

Culture Conditions and Strains. Cells were grown in
Lysogeny Broth (LB) Lennox formulation (10 g/L of tryptone,
5 g/L of yeast extract, 5 g/L of NaCl) or supplemented M9
(M9 minimal medium with 0.4% glycerol, 0.2% casamino acids,
and 1 mM thiamine hydrochloride) as specified, and all cultures
were run at 37 °C. Streptomycin was used at a final
concentration of 50 μg/mL. All experiments were conducted
using the commercially available TOP10 strain (F- mcrA Δ
(mrr-hsdRMS-mcrBC) φ r-hsdRMS- Δ r-hsd nupG recA1
araD139 Δ (ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-)
(Invitrogen).

Growth Assays. For shake-flask cultures, cells were grown
overnight with appropriate levels of streptomycin. Cells were
then diluted 50× into 100 mL of growth medium in a 250 mL
Erlenmyer flask and placed in a shaking incubator, shaken at
speeds indicated. Samples were collected every 30 min
postdilution to determine the optical density at 600 nm
(hereafter, simply OD) and for quantification of genomic
distributions by flow cytometry.

Figure 5. HMG simulator-based prediction of gene dosage effects. The updated and optimized HMG simulator was used as a testbed to predict gene
dosage dynamics over a range of hypothetical growth curves (left column). Here we track three genomic loci (blue, red, and green rectangles),
located at various positions relative to oriC (pink circle). Numbers accompanying the chromosome maps in the top row indicate the relative distance
of each locus from oriC, in each scenario, on a scale where 1.0 is completely distal (e.g., the primary Ter site, teal rectangle). Each predicted trajectory
represents the mean copy number of each locus per cell, averaged over 100 independent simulations, with error bars representing one standard
deviation. For each hypothetical growth curve (left column), each shaded area is labeled with the doubling rate calculated for that window of growth.
Each simulation was inoculated (initiated) under conditions of exponential growth, using the doubling rate calculated for the first indicated period of
exponential growth (gray shading), and thereafter simulations proceeded using the injection method through the remainder of the growth curves.
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DNA Content Analysis. For examination by flow
cytometry, cells were initially diluted into 200 μL of ice-chilled
PBS, and then 800 μL ice-chilled ethanol was added to this
solution. The solution was gently shaken and then pelleted by
centrifugation for 5 min at 1000g. Ethanol solution was
discarded,and cells were resuspended in 500 μL of ice-chilled
PBS, a second such centrifugation was applied, and cells were
resuspended in 500 μL of ice-chilled PBS containing 0.1 μg/mL
DAPI (Thermo Fisher). Fixed and stained cells were stored at 4
°C (no more than 24 h) until analysis by flow cytometry using
an LSR II (BD). Data were analyzed using FlowJo software
(Treestar); a minimum of 2000 individual cells (typically out of
∼25 000 events) was analyzed per sample.
Simulations and Optimization Tools. The model was

written in ANSI C, wrapped with python3. To optimize the
growth parameters we used the python DEAP (Distributed
Evolutionary Algorithms in Python) evolutionary computa-
tional framework.46 The AeMuLambda algorithm, with a
Gaussian mutation function (mu = 0.0, sigma = 0.005,
probability = 0.75) was used on a Linux Ubuntu (64bit) 24-
core Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, 250GB
RAM. The SOBOL quasirandom sequence was generated using
the python Sensitivity Analysis Library (SALib). B-Spline fit
was made using the Wave Analysis for Fatigue and Ocean-
ography (WAFO) python package library. Noise convolution
and nonlinear regression was performed using the Scipy
toolbox in python. Sum of Gaussian fit for deconvolution of
DNA distributions was performed using the MATLAB
interactive peak fitting program (ipf11) script.
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