54 research outputs found
Recommended from our members
Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?
This work was supported by National Institute of Biomedical Imaging and Bioengineering Grant No. U54EB020403 (to the ENIGMA consortium)
Mega-analysis of association between obesity and cortical morphology in bipolar disorders:ENIGMA study in 2832 participants
Background: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. Methods: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. Results: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. Conclusions: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.</p
Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p
Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p
Beyond the Global Brain Differences:Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers
BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and globalbrain differences compared with noncarriers. However, interpreting regional differences is challenging if a globaldifference drives the regional brain differences. Intraindividual variability measures can be used to test for regionaldifferences beyond global differences in brain structure.METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matchednoncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’sregional difference and global difference, were used to test for regional differences that diverge from the globaldifference.RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differedmore than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thicknessin regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal andsomatosensory cortex differed more than the global difference in cortical thickness.CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanismsinvolved in altered neurodevelopment
Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume
Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers
Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium
BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group.
METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide.
RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset.
CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia
- …