206 research outputs found

    Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere

    Get PDF
    Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century

    Particles, air quality, policy and health

    Get PDF
    The diversity of ambient particle size and chemical composition considerably complicates pinpointing the specific causal associations between exposure to particles and adverse human health effects, the contribution of different sources to ambient particles at different locations, and the consequent formulation of policy action to most cost-effectively reduce harm caused by airborne particles. Nevertheless, the coupling of increasingly sophisticated measurements and models of particle composition and epidemiology continue to demonstrate associations between particle components and sources (and at lower concentrations) and a wide range of adverse health outcomes. This article reviews the current approaches to source apportionment of ambient particles and the latest evidence for their health effects, and describes the current metrics, policies and legislation for the protection of public health from ambient particles. A particular focus is placed on particles in the ultrafine fraction. The review concludes with an extended evaluation of emerging challenges and future requirements in methods, metrics and policy for understanding and abating adverse health outcomes from ambient particles

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State

    Get PDF
    SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors
    • …
    corecore