8,298 research outputs found
Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity
Both excitatory and inhibitory synaptic contacts display activity dependent
dynamic changes in their efficacy that are globally termed synaptic
plasticity. Although the molecular mechanisms underlying glutamatergic
synaptic plasticity have been extensively investigated and described, those
responsible for inhibitory synaptic plasticity are only beginning to be
unveiled. In this framework, the ultrastructural changes of the inhibitory
synapses during plasticity have been poorly investigated. Here we combined
confocal fluorescence microscopy (CFM) with high resolution scanning electron
microscopy (HRSEM) to characterize the fine structural rearrangements of post-
synaptic GABAA Receptors (GABAARs) at the nanometric scale during the
induction of inhibitory long-term potentiation (iLTP). Additional electron
tomography (ET) experiments on immunolabelled hippocampal neurons allowed the
visualization of synaptic contacts and confirmed the reorganization of post-
synaptic GABAAR clusters in response to chemical iLTP inducing protocol.
Altogether, these approaches revealed that, following the induction of
inhibitory synaptic potentiation, GABAAR clusters increase in size and number
at the post-synaptic membrane with no other major structural changes of the
pre- and post-synaptic elements
Phosphoinositide 3-kinase γ-deficient hearts are protected from the PAF-dependent depression of cardiac contractility
Objectives: Following an ischemic insult, cardiac contractile recovery might be perturbed by the release of autacoids, like platelet-activating factor (PAF), that depress heart function by acting through G protein-coupled receptors (GPCRs). The signaling events downstream the PAF receptor that lead to the negative inotropic effect are still obscure. We thus investigated whether the GPCR-activated phosphoisositide 3-kinase γ (PI3Kγ) could play a role in the cardiac response to PAF. Methods: The negative inotropic effect of PAF was studied ex vivo, in isolated electrically driven atria and in Langendorff-perfused whole hearts derived from wild-type and PI3Kγ-null mice. Postischemic recovery of contractility was analyzed in normal and mutant whole hearts subjected to 30 min of ischemia and 40 min of reperfusion in the presence or absence of a PAF receptor antagonist. Results: While wild-type hearts stimulated with PAF showed increased nitric oxide (NO) production and a consequent decreased cardiac contractility, PI3Kγ-null hearts displayed reduced phosphorylation of nitric oxide synthase 3 (NOS3), blunted nitric oxide production and a complete protection from the PAF-induced negative inotropism. In addition, Langendorff-perfused PI3Kγ-null hearts showed a better contractile recovery after ischemia/reperfusion, a condition where PAF is known to be an important player in depressing contractility. In agreement with a role of PI3Kγ in this PAF-mediated signaling, postischemic contractile recovery in PI3Kγ-null mice appeared overlapping with that of normal hearts treated with the PAF receptor antagonist WEB 2170. Conclusion: These data indicate a novel PAF-dependent signaling pathway that, involving PI3Kγ and NOS3, contributes to postischemic contractile depressio
Impact of Synaptic Neurotransmitter Concentration Time Course on the Kinetics and Pharmacological Modulation of Inhibitory Synaptic Currents
The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
- …
