183 research outputs found

    Lambda- and antilambda production at CERN-SPS energies

    Get PDF
    Vortrag gehalten an der Tagung "The XVI International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, organized by SUBATECH Laboratory", in Nantes, France, 18-24 Juli 2002

    Lambda- und Antilambda-Produktion in zentralen Blei-Blei-Kollisionen bei 40, 80 und 158 GeV pro Nukleon

    Get PDF
    Zielsetzung der ultrarelativistischen Schwerionenphysik ist es, hoch verdichtete und stark erhitzte Kernmaterie (gemeint ist hierbei nicht nur die Materie der Atomkerne, sondern allgemein stark wechselwirkende Materie) im Labor zu erzeugen und deren Eigenschaften zu untersuchen. Gitter-QCD Rechnungen sagen bei einer kritischen Energiedichte von 1-2 GeV/fm3 einen Übergang der hadronischen Materie in eine partonische Phase, dem Quark-Gluon-Plasma, voraus. Neben anderen Observablen wurde die Seltsamkeitsproduktion als mögliche Signatur für den Materiezustand quasifreier Quarks und Gluonen vorgeschlagen. Im Vergleich zu elementaren Nukleon-Nukleon-Reaktionen beobachtet man in Schwerionenkollisionen generell eine Überhöhung der Seltsamkeitsproduktion. Inwieweit dieser Unterschied bei allen Schwerpunktenergie auf rein hadronische Phänomene zurückgeführt werden kann, oder ob partonische Gleichgewichtseffekte eine wesentliche Rolle spielen, ist derzeit eines der wichtigen Themen der Schwerionenphysik. Antworten auf diese Fragen erhofft man sich aus der Untersuchung der Energieabhängigkeit der Erzeugung seltsamer Hadronen. Die NA49 Kollaboration hat deshalb am CERN-SPS ein Energie-Scan Programm aufgelegt, in dem zentrale Blei-Blei-Kollisionen bei 40, 80 und 158 A·GeV untersucht wurden. In dieser Arbeit wird die Produktion von Lambda und Antilambda Hyperonen bei den drei verschiedenen Strahlenergien untersucht. Lambda Hyperonen, die 30-60% der produzierten s-Quarks enthalten, erlauben neben der Seltsamkeitsproduktion gleichzeitig auch den durch die kollidierenden Kerne erzeugten Effekt der Baryonendichte zu studieren. Das NA49 Experiment führt präzise Messungen des hadronischen Endzustands über einen weiten Akzeptanzbereich durch. Die geladenen Sekundärteilchen werden in vier hochauflösenden Spurdriftkammern gemessen. Neutrale seltsame Teilchen (Lambda, Antilambda und K0s) werden anhand ihrer Zerfallstopologie identifiziert. Die untersuchten Lambda Hyperonen werden über drei Rapiditätseinheiten um den Bereich zentraler Rapidität und mit Transversalimpulsen von 0,4 und 2,5 GeV/c gemessen. Die Temperaturparameter der Lambda und Antilambda Transversalimpulsverteilungen bei zentraler Rapidität sind für die drei Energien im Rahmen der Fehler gleich. Als Funktion der Schwerpunktenergie beobachtet man einen Anstieg des Lambda-Temperaturparameters, was durch eine Erhöhung des kollektiven transversalen Flusses erklärt werden kann. Erste Ergebnisse zur Proton-Produktion zeigen einen ähnlichen Trend. Die Rapiditätsverteilungen der Lambda sind breiter als die der Antilambda-Hyperonen. Die Lambda Rapiditätsverteilung verbreitert sich mit ansteigender Schwerpunktenergie von einer bei zentraler Rapidität konzentrierten Verteilung bei 40 A·GeV zu einem flachen Verlauf bei 158 A·GeV. Die Lambdas enthalten Beiträge der extrem kurzlebigen Sigma 0, die elektromagnetisch in ein Lambda und ein Photon zerfallen. Die in der Analyse selektierten Lambda und Antilambda sind aufgrund der gewählten Qualitätskriterien nahezu frei von Beiträgen mehrfachseltsamer Baryonen. Der systematische Fehler der Spektren konnte zu 9% abgeschätzt werden. Die Korrekturen und die Analyseprozedur wurden durch die Extraktion des K0s Mesons bei 158 A·GeV und den Vergleich dieser Ergebnisse mit denen der geladenen Kaonen überprüft. Man stellt eine gute Übereinstimmung fest. Zusammen mit Ergebnissen bei niedrigeren Energien läßt sich die Anregungsfunktion der Lambda und AntiLambda Hyperonen studieren. Während die Lambda Multiplizität bei mittlerer Rapidität nach dem Anstieg bei niedrigen Energien im SPS-Energiebereich leicht abfällt bzw. die totale Multiplizität saturiert, beobachtet man für die AntiLambda einen stetigen Anstieg als Funktion der Schwerpunktenergie. Das /-Verhältnis in Kern-Kern-Kollisionen zeigt einen steilen Anstieg im AGS-Energiebereich mit anschließendem Maximum und einem Abfall bei SPS-Energien. Dagegen beobachtet man in Nukleon-Nukleon-Reaktionen eine Saturation dieses Verhältnisses bei etwa der höchsten AGS-Energie. Die Normierung auf die Pionen dient dem Vergleich der Produktionsraten in Kern-Kern-Stößen mit denen der elementaren Systeme und ist unabhängig von der Anzahl der beteiligten Nukleonen. Das Maximum des Lambda/Pi Verhältnisses liegt zwischen 10 und 40 A·GeV, wie es von statistischen Modellen vorhergesagt wird. Die Energieabhängigkeit des Lambda/Pi-Verhältnisses läßt sich dementsprechend gut mit dem Statistischen Modell von Cleymans, Redlich et al. beschreiben. Der generelle Trend des Lambda/Pi Verhältnisses wird von den mikroskopischen Modellen (UrQMD, HSD, RQMD) richtig wiedergegeben, wobei jedoch die Datenpunkte (besonders für 40 A·GeV) unterschätzt werden. Die Vorhersagen des UrQMD- und HSD-Modells für die Lambda Rapiditätsverteilung zeigen sehr gute Übereinstimmung mit den Daten. Die Diskrepanz im Lambda/Pi Verhältnis ist somit auf die überschätzte Pion-Produktion zurückzuführen. Die AntiLambda Produktion wird von dem UrQMD- und RQMD-Modell um mehr als einen Faktor zwei unterschätzt. Die Lambda und Antilambda Produktionsraten für alle drei Energien und die totale K0s Multiplizität bei 158 A·GeV fügen sich in einer statistischen Modellanalyse von Becattini in die Systematik der anderen Teilchen ein. Der Seltsamkeits-Saturationsfaktor gamma s zeigt keine große Änderung als Funktion der Energie. Das AntiLambda/Lambda Verhältnis bei mittlerer Rapidität, das den Paarproduktionsprozess widerspiegelt, steigt rapide von AGS- bis RHIC-Energien an. Der gleiche Trend ist für das ¯p/p Verhältnis beobachtbar. Das AntiLambda/¯p Verhältnis erlaubt das Zusammenspiel der Produktions und Annihilationsprozesse zu studieren. Im SPS-Energiebereich steigt dieses Verhältnis mit abnehmender Schwerpunktenergie leicht an. Die Ergebnisse der vorliegenden Arbeit wurden auf der Strange-Quark-Matter Konferenz 2001 [1] und der Quark-Matter Konferenz 2002 [2] vorgestellt und diskutiert

    A new correlation method to identify and separate charm and bottom production processes at RHIC

    Get PDF
    Electrons from semileptonic decays of heavy-flavor mesons (D and B) allow to study the energy loss of heavy-quarks in nuclear collisions at sqrt(s) = 200 GeV at RHIC. Since pQCD calculations have shown that the crossing point where bottom decay electrons start to dominate over charm decay electrons is largely unknown, an urgent need arises to access the relative contributions independently. A correlation method is proposed to identify and separate charm and bottom production processes on a statistical basis through tagging of their decay electrons and open charmed mesons. The feasibility for this method is demonstrated using PYTHIA and MC@NLO simulations. The latter allows to estimate the complete NLO contributions, including e.g. gluon-splitting diagrams.Comment: Corrected last typo

    Recent high pT measurements in STAR

    Full text link
    After five years of data taking, the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory provides precise measurements of particle production at high transverse momentum in p-p, d-Au, and Au-Au collisions at sqrt(s) = 200 GeV. We review recent results on the flavor dependence of high pT particle suppression and hadron particle spectra at sqrt(s) = 62.4 GeV. New results on two-particle angular correlations for identified trigger particles and for low momentum associated charged hadrons in p-p and Au-Au as well as near-side Δη\Delta\eta correlations will be presented and discussed.Comment: 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Calcutta. 8 pages, 10 figures, submitted to J. Phys. G: Nucl. Part. Phy

    Jet-like correlations of heavy-flavor particles - from RHIC to LHC

    Full text link
    Measurements at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory have revealed strong modification of the jet structure in high-energy heavy-ion collisions, which can be attributed to the interaction of hard scattered partons with the hot and dense QCD matter. The study of heavy-quark (charm and bottom) production in such collisions provides key tests of parton energy-loss models and, thus, yields profound insight into the properties of the produced matter. The high-pT yield of heavy-flavor decay electrons exhibits an unexpected large suppression. Since those single electrons have contributions from charm and bottom decays an experimental method is needed to investigate them separately. Heavy-flavor particle correlations provide information about the underlying production mechanism. In this contribution, a review on recent measurements on azimuthal correlations of single electrons and open charmed mesons at RHIC and perspectives of such measurements at the CERN-Large Hadron Collider (LHC) are presented. Moreover, it has been shown that next-to-leading-order (NLO) QCD processes, such as gluon splitting, become important at LHC energies. It will be demonstrated how this contribution can be determined through the measurement of the charm content in jets.Comment: 8 pages, 6 figures, Proceedings of the 27th Winter Workshop on Nuclear Dynamics, Winter Park, Colorado, USA. To be published in Journal of Physics: Conference Series (JPCS

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    System size and centrality dependence of the balance function in A + A collisions at sqrt s NN = 17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Results from proton–lead collisions

    No full text
    This contribution summarises recent measurements in small collision systems at the Large Hadron Collider (LHC), presented at the 2016 edition of the Annual Large Hadron Collider Physics conference. Three main probes are discussed, namely light flavour (strangeness) production, az- imuthal angular correlations and jets, and open and hidden heavy-flavour production in proton- lead collisions
    corecore