184 research outputs found

    Plastic formulation is an emerging control of its photochemical fate in the ocean

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environmental Science & Technology, 55(18), (2021): 12383–12392, https://doi.org/10.1021/acs.est.1c02272.Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.Funding was provided by the Seaver Institute, the Gerstner Family Foundation, Woods Hole Oceanographic Institution, and the National Science Foundation Graduate Research Fellowship Program (A.N.W.). The Ion Cyclotron Resonance user facility at the National High Magnetic Field Laboratory is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida

    Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 243, doi:10.3389/fmars.2016.00243.Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu) and nickel (Ni) in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS), and high-resolution electrospray ionization mass spectrometry (ESIMS). Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of [C20H21N4O8S2+M]+ (M = metal isotope) and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex). Molecular formulae of [C32H54N3O6S2Ni]+ and [C33H56N3O6S2Ni]+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as well as variability in the extent to which different metals in the same environment compete for ligand binding.Support was provided by the National Science Foundation (NSF) program in Chemical Oceanography (OCE-1356747, OCE-1233261, OCE-1233733, OCE-1233502, and OCE-1237034), the NSF Science and Technology Center for Microbial Oceanography Research and Education (C-MORE; DBI-0424599), the Gordon and Betty Moore Foundation (#3298 and 3934), and the Simons Foundation (#329108, DR)

    Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff

    Get PDF
    Dissolved organic matter (DOM) in glacier runoff is aliphatic-rich, yet studies have proposed that DOM originates mainly from allochthonous, aromatic, and often aged material. Allochthonous organic matter (OM) is exposed to ultraviolet radiation both in atmospheric transport and post-deposition on the glacier surface. Thus, we evaluate photochemistry as a mechanism to account for the compositional disconnect between allochthonous OM sources and glacier runoff DOM composition. Six endmember OM sources (including soils and diesel particulate matter) were leached and photo-irradiated for 28 days in a solar simulator, until >90% of initial chromophoric DOM was removed. Ultrahigh-resolution mass spectrometry was used to compare the molecular composition of endmember leachates pre- and post-irradiation to DOM in supraglacial and bulk runoff from the Greenland Ice Sheet and Juneau Icefield (Alaska), respectively. Photoirradiation drove molecular level convergence between the initially aromatic-rich leachates and aromatic-poor glacial samples, selectively removing aromatic compounds (−80 ± 19% relative abundance) and producing aliphatics (+75 ± 35% relative abundance). Molecular level glacier runoff DOM composition was statistically indistinguishable to post-irradiation leachates. Bray-Curtis analysis showed substantial similarity in the molecular formulae present between glacier samples and post-irradiation leachates. Post-irradiation leachates contained 84 ± 7.4% of the molecular formulae, including 72 ± 17% of the aliphatic formulae, detected in glacier samples. Our findings suggest that photodegradation, either in transit to or on glacier surfaces, could provide a mechanistic pathway to account for the disconnect between proposed aromatic, aged sources of OM and the aliphatic-rich fingerprint of glacial DOM.Megan I. Behnke is thanked for collecting the Alaskan soil samples, Stephanie McColaugh for collecting the Russell Glacier samples, Casey Luzius for help with leachate preparations, and Sarah Ellen Johnston for assistance with DOC analyses. Funding Source: This study was supported by NSF, DEB 1145932 and OCE 1333157 to R. G. M. Spencer. Funding was provided by Alaska EPSCoR (OIA-1757348). A portion of this work was performed in the Ion Cyclotron Resonance User Facility at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR 16-44779, and the State of Florida.Ye

    Humid Evolution of Haze in the Atmosphere of Super-Earths in the Habitable Zone

    Full text link
    Photochemical hazes are expected to form and significantly contribute to the chemical and radiative balance of exoplanets with relatively moderate temperatures, possibly in the habitable zone of their host star. In the presence of humidity, haze particles might thus serve as cloud condensation nuclei and trigger the formation of water droplets. In the present work, we are interested in the chemical impact of such a close interaction between photochemical hazes and humidity on the organic content composing the hazes and on the capacity to generate organic molecules with high prebiotic potential. For this purpose, we explore experimentally the sweet spot by combining N-dominated super-Earth exoplanets in agreement with Titan's rich organic photochemistry and humid conditions expected for exoplanets in habitable zones. A logarithmic increase with time is observed for the relative abundance of oxygenated species, with O-containing molecules dominating after 1 month only. The rapidity of the process suggests that the humid evolution of N-rich organic haze provides an efficient source of molecules with high prebiotic potential

    Automation-Induced Complacency Potential: Development and Validation of a New Scale

    Get PDF
    Complacency, or sub-optimal monitoring of automation performance, has been cited as a contributing factor in numerous major transportation and medical incidents. Researchers are working to identify individual differences that correlate with complacency as one strategy for preventing complacency-related accidents. Automation-induced complacency potential is an individual difference reflecting a general tendency to be complacent across a wide variety of situations which is similar to, but distinct from trust. Accurately assessing complacency potential may improve our ability to predict and prevent complacency in safety-critical occupations. Much past research has employed an existing measure of complacency potential. However, in the 25 years since that scale was published, our conceptual understanding of complacency itself has evolved, and we propose that an updated scale of complacency potential is needed. The goal of the present study was to develop, and provide initial validation evidence for, a new measure of automation-induced complacency potential that parallels the current conceptualization of complacency. In a sample of 475 online respondents, we tested 10 new items and found that they clustered into two separate scales: Alleviating Workload (which focuses on attitudes about the use of automation to ease workloads) and Monitoring (which focuses on attitudes toward monitoring of automation). Alleviating workload correlated moderately with the existing complacency potential rating scale, while monitoring did not. Further, both the alleviating workload and monitoring scales showed discriminant validity from the previous complacency potential scale and from similar constructs, such as propensity to trust. In an initial examination of criterion-related validity, only the monitoring-focused scale had a significant relationship with hypothetical complacency (r = -0.42, p < 0.01), and it had significant incremental validity over and above all other individual difference measures in the study. These results suggest that our new monitoring-related items have potential for use as a measure of automation-induced complacency potential and, compared with similar scales, this new measure may have unique value

    Qualitative perspectives on how Manchester United Football Club developed and sustained serial winning

    Get PDF
    Talent development in sport is well represented in scientific literature. Yet, the drive to protect ‘trade secrets’ often means that access to these high performing groups is rare, especially as these high level performances are being delivered. This leaves the details of high-end working practices absent from current academic commentary. As a result, clubs interested in developing excellent practice are left to build on personal initiative and insight and/or custom-and-practice, which is unlikely to yield successful outcomes. To address this shortfall the current study reports on prolonged engagement with a single high performing club, considering how their practice corresponds with existing sport talent development models. The paper ends by proposing an evidence-based, football-specific model for talent development, maintained high level performance and serial winning. This model emphasises four dominant features: culture, behavioral characteristics, practice engagement and the managing and guiding of performance ‘potential’. The study provides insights into the visceral reality of daily experiences across the life course of professional soccer, while advancing the evidence-base for understanding how Manchester United achieved their serial success

    Development of a ParticipACTION App–Based Intervention for Improving Postsecondary Students’ 24-Hour Movement Guideline Behaviors: Protocol for the Application of Intervention Mapping

    Get PDF
    Background:The Canadian 24-Hour Movement Guidelines for adults provide specific recommendations for levels of physical activity, sedentary behavior, and sleep (ie, the movement behaviors) required for optimal health. Performance of the movement behaviors is associated with improved mental well-being. However, most postsecondary students do not meet the movement behavior recommendations within the Canadian 24-Hour Movement Guidelines and experience increased stress and declining well-being, suggesting the need for an intervention targeting students’ movement behaviors.Objective:We aimed to develop and implement a theory-informed intervention intended to improve the movement behaviors and mental well-being of first-year postsecondary students.Methods:The Intervention Mapping protocol was applied in the development and implementation of the intervention. Intervention Mapping entailed performing a needs assessment, determining the intervention outcomes, selecting theory- and evidence-based change methods and applications, preparing and producing intervention plans and materials, developing the implementation plan, and finally developing an evaluation plan. The Theoretical Domains Framework and the Behavior Change Wheel were also used in conjunction with the Intervention Mapping protocol to ensure a solid theoretical basis for the intervention. This protocol led to the development and implementation of a 6-week, theory-informed ParticipACTION app–based intervention aimed at helping first-year postsecondary students improve their movement behaviors and mental well-being. The developed app content provided students with information on each of the movement behaviors and behavioral strategies (ie, goal setting, action planning, monitoring, and coping planning). The use of Intervention Mapping allowed for the continuous involvement of various multidisciplinary partners and end users, ensuring that the intervention design and implementation was appropriate for the target audience. The feasibility, acceptability, and potential impact of the intervention will be examined in a subsequent proof-of-concept study at 2 Canadian university campuses.Results:Participant recruitment occurred during September 2021, and the intervention was conducted from October to December 2021. The deadline for completion of the postintervention questionnaire by participants was mid-December 2021. The analysis of data examining the feasibility, acceptability, and potential impact of the intervention began in January 2022, with the publication of the proof-of-concept evaluation expected in 2023.Conclusions:Intervention Mapping with the Theoretical Domains Framework and Behavior Change Wheel was a useful approach to combine evidence and theoretical concepts to guide the design and implementation of a ParticipACTION app–based intervention targeting postsecondary students’ movement behaviors and mental well-being. This process may serve as an example for other researchers developing multiple behavior change app–based interventions. Should the forthcoming evaluation demonstrate the intervention’s acceptability, feasibility, and potential impact, the intervention may provide a scalable method of improving postsecondary students’ movement behaviors and mental well-being

    Preparation, structured deliberate practice and decision making in elite level football: The case study of Gary Neville (Manchester United FC and England)

    Get PDF
    Decision making in elite level sporting competition is often regarded as distinguishing success from failure. As an intricate brain-based process it is unlike other physical processes because it is invisible and is typically only evidenced after the event. This case study shows how an individual achieved great success in elite level professional football through consistent positive decision making on and off the field of play. Through prolonged interviewing, Gary Neville, a player from Manchester United Football Club, explored personal behaviours, the structure and activities of deliberate practice and his professional choices in match preparation. His career-long devotion to purposeful organised practice was focused on cognition, physical preparation, context-relative physical action and refined repetition to optimise his mental comfort while enhancing his match day performances. This approach was underpinned by diligent personal and collective organisation and by concerted action. Results provide an insight into the categorical nature of his deliberate practice, sport-specific information processing and match-based decision making. At the operational level, his process was mediated by a complex mental representation of ongoing and anticipated game situations; these representations were continuously updated during each match. Allowing for the limitations of the design, implications are provided for developmental and educational coaching, match preparation, deliberate practice activity and improved use of the performance analysis software packages in professional football

    A new conceptual framework for the transformation of groundwater dissolved organic matter

    Get PDF
    Groundwater comprises 95% of the liquid fresh water on Earth and contains a diverse mix of dissolved organic matter (DOM) molecules which play a significant role in the global carbon cycle. Currently, the storage times and degradation pathways of groundwater DOM are unclear, preventing an accurate estimate of groundwater carbon sources and sinks for global carbon budgets. Here we reveal the transformations of DOM in aging groundwater using ultra-high resolution mass spectrometry combined with radiocarbon dating. Long-term anoxia and a lack of photodegradation leads to the removal of oxidised DOM and a build-up of both reduced photodegradable formulae and aerobically biolabile formulae with a strong microbial signal. This contrasts with the degradation pathway of DOM in oxic marine, river, and lake systems. Our findings suggest that processes such as groundwater extraction and subterranean groundwater discharge to oceans could result in up to 13 Tg of highly photolabile and aerobically biolabile groundwater dissolved organic carbon released to surface environments per year, where it can be rapidly degraded. These findings highlight the importance of considering groundwater DOM in global carbon budgets.Ye

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
    • 

    corecore