71 research outputs found

    Student Reactions to a Faculty Strike

    Get PDF
    Following a three week faculty strike at Dalhousie University in 1988, questionnaires were obtained from 187 students concerning how the strike affected their academic work, emotions and opinions of the university. Results were analyzed separately for first year undergraduates, other undergraduates, and graduate or professional school students. There was much individual variability in reactions, but on average the strike had slightly negative academic and emotional effects but substantial negative effects on opinions about the university. Undergraduate students indicated the most academic disruption, and upper year undergraduates indicated the most negative opinions. There was no correlation, however, between degree of personally experienced academic disruption and degree of negative opinion. Another survey two years after the strike indicated the reestablishment of positive opinions. Implications for ameliorating the effects of a faculty strike are discussed.Une enquête a été menée auprès de 187 étudiants et étudiantes de l'Université Dalhousie visant à évaluer l'effet de la grève de trois semaines du corps professoral de l'Université Dalhousie en 1988 sur le travail académique, les émotions, et l'opinion qu'avaient les étudiants de l'Université. Les résultats furent désagrégés selon trois groupes d'étudiants soit ceux inscrits à la première année du premier cycle, les autres étudiants du premier cycle et les étudiants des cycles supérieurs et des programmes professionnels. Bien qu'on remarque une grande variabilité chez les répondants individuellement, on observe que généralement, la grève n'a eu que de faibles effets négatifs au plans académique et émotif, mais qu'elle a généré de vives réactions négatives quant aux opinions que les étudiants avaient de l'Université. Par rapport à la différenciation par groupes, les étudiants de la première année du premier cycle ont été davantage affecté au plan académique alors que ceux inscrits aux études supérieures ont manifesté le degré le plus élevé d'opinions négatives envers l'Université. Il n'y a toutefois pas de corrélation entre le niveau de perturbation académique personnellement rapporté par les étudiants et les opinions négatives détenues. Une seconde enquête effectuée deux ans plus tard démontre que les opinions des étudiants envers l'Université sont redevenues positives. L'article conclut sur une analyse des implication d'une grève du corps professoral

    Clinical Effectiveness of an Aquatic Exercise Program on Those with Visual Impairments: A Protocol Study

    Get PDF
    BACKGROUND/PURPOSE: Living with visual impairment can greatly affect one’s ability to exercise and maintain an active lifestyle. People with low vision or parents of children with low vision are often fearful of aerobic exercise because of the possibility of harm that could occur from the inability to see. Little research has been done on using aquatic therapy as a form of exercise in people with low vision. The purpose of this study is to see if aquatic exercise is well tolerated within this population. Additionally, this study serves to determine the effect of aquatic exercise on cardiovascular fitness, functional strength, and overall quality of life. METHOD(S): This is a quasi-experimental study with participants who have a visual impairment and are aged 30-85 from Northeast Sight Services located in Exeter, PA. Up to 25 participants will be guided by physical therapy students through an eight-week aquatic therapy program at the Misericordia University Anderson Center Pool. It is a pre-test and post-test design with the outcome measures being performed at the beginning of week one and at the end of week eight. The outcome measures selected to assess lower extremity strength and endurance, cardiopulmonary fitness and endurance, and quality of life include the 30 Second Chair Stand Test, Borg Rating of Perceived Exertion (RPE), the Modified Borg Dyspnea Scale, and the SF-36. DISCUSSION: If aquatic exercise shows to be effective in improving lower extremity strength and endurance, cardiopulmonary fitness and endurance, and quality of life for those with visual impairments, it will show that this is a viable treatment method for physical therapists to use with this population. It will also give physical therapists the opportunity to promote health and wellness in community members that have visual impairments.https://digitalcommons.misericordia.edu/research_posters2020/1071/thumbnail.jp

    Removal of Cu (II) via chitosan-conjugated iodate porous adsorbent: Kinetics, thermodynamics, and exploration of real wastewater sample

    Get PDF
    Remediation of copper (II) pollutant in aquatic ecosystems is a long-standing concern in the field of water management and the subject of intensive research. In this study, chitosan conjugated iodate porous material (CS�CI) was successfully prepared by media (ammonia, acetic acid, and absolute ethanol) and was used in the treatment of Cu (II) in wastewater samples. Different methods were applied to characterize the CS-CI, including FTIR, SEM, XRD, and TGA. The result showed significant improvement in surface properties and stability when the chitosan was conjugated with the iodate. The adsorption of Cu (II) followed the pseudo-first-order kinetic model and Langmuir isotherm model with a maximum adsorption capacity of 95.2 mg/g. In a complex system (real wastewater), the CS-CI took advantage of the adsorptive properties of both chitosan (CS) and the iodate to significantly improved the remediation of Cu (II) in aqueous media. Therefore, the synthesized chitosan con�jugated iodate porous material is promising as an alternative low-cost adsorbent for the treatment of copper (II) in wastewater

    A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the remote early detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial

    Get PDF
    Abstract Objectives It is currently thought that most—but not all—individuals infected with SARS-CoV-2 develop symptoms, but that the infectious period starts on average two days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) the algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. Trial design The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. All subjects will participate in an initial Learning Phase (varying from 2 weeks to 3 months depending on enrolment date), followed by two contiguous 3-month test phases, Period 1 and Period 2. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in one of these periods and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either Sequence 1 (experimental condition first) or Sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. Participants The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6,500 normal-risk individuals and 3,500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal, and self-sampling serology and PCR kits. During recruitment, subjects will be invited to visit the COVID-RED web portal ( www.covid-red.eu ). After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria. Inclusion criteria: Resident of the Netherlands At least 18 years old Informed consent provided (electronic) Willing to adhere to the study procedures described in the protocol Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, study team should be notified) Be able to read, understand and write Dutch Exclusion criteria: Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) Previously received a vaccine developed specifically for COVID-19 or in possession of an appointment for vaccination in the near future (self-reported) Current suspected (e.g., waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) Participating in any other COVID-19 clinical drug, vaccine, or medical device trial (self-reported) Electronic implanted device (such as a pacemaker; self-reported) Pregnant at time of informed consent (self-reported) Suffering from cholinergic urticaria (per the Ava bracelet’s User Manual; self-reported) Staff involved in the management or conduct of this study Intervention and comparator All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronise it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 hours, the Ava COVID-RED app’s underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that: no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Main outcomes The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature, and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava Bracelet data when coupled with the self-reported Daily Symptom Diary data, and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional seventeen secondary outcomes which address infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2 infected participants, and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme, and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (Month 0), and at the end of the Learning Phase (Month 3), Period 1 (Month 6) and Period 2 (Month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the Learning Phase is positive, and samples collected at the end of Period 1 will only be analysed if the sample collected at the end of Period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called “COVID-positive” mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using data collected in Period 2 (Month 6 through 9). Within this period, serology tests (before and after Period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. Randomisation All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in equal numbers of high-risk and normal-risk individuals between the sequences. Blinding (masking) In this study, subjects will be blinded as to study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. Numbers to be randomised (sample size) 20,000 subjects will be recruited and randomized 1:1 to either Sequence 1 (experimental condition followed by control condition) or Sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6,500 normal-risk and 3,500 high-risk individuals per sequence. Trial Status Protocol version: 1.2, dated January 22nd, 2021 Start of recruitment: February 22nd, 2021 End of recruitment (estimated): April 2021 End of follow-up (estimated): December 2021 Trial registration The trial has been registered at the Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol

    Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations

    Get PDF
    All authors: Olga Y. Gorlova , Yafang Li, Ivan Gorlov, Jun Ying, Wei V. Chen, Shervin Assassi, John D. Reveille, Frank C. Arnett, Xiaodong Zhou, Lara Bossini-Castillo, Elena Lopez-Isac, Marialbert Acosta-Herrera, Peter K. Gregersen, Annette T. Lee, Virginia D. Steen, Barri J. Fessler, Dinesh Khanna, Elena Schiopu, Richard M. Silver, Jerry A. Molitor, Daniel E. Furst, Suzanne Kafaja, Robert W. Simms, Robert A. Lafyatis, Patricia Carreira, Carmen Pilar Simeon, Ivan Castellvi, Emma Beltran, Norberto Ortego, Christopher I. Amos, Javier Martin, Maureen D. Mayes.Data Availability Statement: Genetic data is available from dbGaP repository (https://www.ncbi. nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_ id=phs000357.v1.p1).Gene-level analysis of ImmunoChip or genome-wide association studies (GWAS) data has not been previously reported for systemic sclerosis (SSc, scleroderma). The objective of this study was to analyze genetic susceptibility loci in SSc at the gene level and to determine if the detected associations were shared in African-American and White populations, using data from ImmunoChip and GWAS genotyping studies. The White sample included 1833 cases and 3466 controls (956 cases and 2741 controls from the US and 877 cases and 725 controls from Spain) and the African American sample, 291 cases and 260 controls. In both Whites and African Americans, we performed a gene-level analysis that integrates association statistics in a gene possibly harboring multiple SNPs with weak effect on disease risk, using Versatile Gene-based Association Study (VEGAS) software. The SNP-level analysis was performed using PLINK v.1.07. We identified 4 novel candidate genes (STAT1, FCGR2C, NIPSNAP3B, and SCT) significantly associated and 4 genes (SERBP1, PINX1, TMEM175 and EXOC2) suggestively associated with SSc in the gene level analysis in White patients. As an exploratory analysis we compared the results on Whites with those from African Americans. Of previously established susceptibility genes identified in Whites, only TNFAIP3 was significant at the nominal level (p = 6.13x10-3) in African Americans in the gene-level analysis of the ImmunoChip data. Among the top suggestive novel genes identified in Whites based on the ImmunoChip data, FCGR2C and PINX1 were only nominally significant in African Americans (p = 0.016 and p = 0.028, respectively), while among the top novel genes identified in the gene-level analysis in African Americans, UNC5C (p = 5.57x10-4) and CLEC16A (p = 0.0463) were also nominally significant in Whites. We also present the gene-level analysis of SSc clinical and autoantibody phenotypes among Whites. Our findings need to be validated by independent studies, particularly due to the limited sample size of African Americans.Funding was provided to MDM by the National Institutes of Health (NIH) the National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS https://www.niams.nih.gov/) Centers of Research Translation (CORT) P50-AR054144, NIH grant N01-AR-02251 and R01-AR-055258, and the Department of Defense (DD) Congressionally Directed Medical Research Program (http://cdmrp.army.mil/) W81XWH-07-1-011 and WX81XWH-13-1-0452 for the collection, analysis and interpretation of the data

    Recommendations for National Risk Assessment for Disaster Risk Management in EU

    Get PDF
    Decision No 1313/2013/EU on a Union Civil Protection Mechanism (UCPM) calls Participating States to develop risk assessments periodically and make the summary of their National Risk Assessment (NRA) available to the European Commission as a way to prevent disaster risk in Europe. In order to facilitate countries on this task, the European Commission developed the Guidelines on risk assessment and mapping. In spite of these, the summaries received have revealed several challenges related to the process and the content of the assessments. The current report aims to provide scientific support to the UCPM participant countries in their development of NRA, explaining why and how a risk assessment could be carried out, how the results of this could be used for Disaster Risk Management planning and in general, how science can help civil protection authorities and staff from ministries and agencies engaged in NRA activities. The report is the result of the collaborative effort of the Disaster Risk Management Knowledge Centre team and nine Joint Research Centre expert groups which provided their insight on tools and methods for specific risk assessment related to certain hazards and assets: drought, earthquakes, floods, terrorist attacks, biological disasters, critical infrastructures, chemical accidents, nuclear accidents and Natech accidents. The current document would be improved by a next version that would include scientific guidance on other risks and the collaboration of potential users.JRC.E.1-Disaster Risk Managemen

    Gastroesophageal Reflux and Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) and Gastroesophageal reflux disease (GERD) commonly co-exist. Pathophysiological mechanisms causing IPF are still not well understood, and GERD has been implicated in both as a probable causative and disease-promoting entity. Although not conclusively proven, this relationship has been the subject of several studies, including therapeutic interventions aimed at treating GERD and its resultant effect on IPF and related outcomes. Our review aims to present the current concepts and understanding of these two disease processes, which are multifaceted. Their complex interaction includes epidemiology, pathophysiology, diagnosis, treatment, review of research studies conducted to date, and future directions for research

    Behavioral Corporate Finance: An Updated Survey

    Full text link

    Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy

    Get PDF
    Contains fulltext : 97006.pdf (publisher's version ) (Open Access)The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32x10(-12), OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 x 10(-6), OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39x10(-7), OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79x10(-61), OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57x10(-76), OR = 8.84), and in NOTCH4 with ACA P = 8.84x10(-21), OR = 0.55) and ATA (P = 1.14x10(-8), OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc
    corecore