70 research outputs found

    What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research

    Get PDF
    Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes

    Trans-mitochondrial coordination of cristae at regulated membrane junctions

    Get PDF
    Reminiscent of bacterial quorum sensing, mammalian mitochondria participate in inter-organelle communication. However, physical structures that enhance or enable interactions between mitochondria have not been defined. Here we report that adjacent mitochondria exhibit coordination of inner mitochondrial membrane cristae at inter-mitochondrial junctions (IMJs). These electron-dense structures are conserved across species, resistant to genetic disruption of cristae organization, dynamically modulated by mitochondrial bioenergetics, independent of known inter-mitochondrial tethering proteins mitofusins and rapidly induced by the stable rapprochement of organelles via inducible synthetic linker technology. At the associated junctions, the cristae of adjacent mitochondria form parallel arrays perpendicular to the IMJ, consistent with a role in electrochemical coupling. These IMJs and associated cristae arrays may provide the structural basis to enhance the propagation of intracellular bioenergetic and apoptotic waves through mitochondrial networks within cells

    A Reaction-Diffusion Model of ROS-Induced ROS Release in a Mitochondrial Network

    Get PDF
    Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS). Here, we develop a mathematical model of ROS-induced ROS release (RIRR) based on reaction-diffusion (RD-RIRR) in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and Ca2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.−) diffusion and the O2.−-dependent activation of an inner membrane anion channel (IMAC). In a 2D network composed of 500 mitochondria, model simulations reveal ΔΨm depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O2.− diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that ΔΨm depolarization is mediated specifically by O2.−. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the fundamental mechanisms leading from the failure of individual organelles to the whole cell, thus it has important implications for understanding cell death during the progression of heart disease

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis

    Full text link

    Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study

    No full text
    The fine structure of mitochondria and smooth endoplasmic reticulum (SER) was studied via electron microscopy in dendritic and axonal neuronal segments of hippocampal areas CA1, CA3, and dentate gyrus (DG) of both ground squirrels in normothermic and hibernating conditions, and rats. Ultrathin serial sections of approximately 60 nm (up to 150 per series) were taken and three-dimensional (3D) reconstructions made of dendritic segments, up to 36 microm in length. Mitochondria were demonstrated to be present in filamentous form in every dendrite examined, in each of the hippocampal regions studied, whether in rat or ground squirrel. In addition, apparent continuity between the outer mitochondrial membrane and that of SER was observed by 3D reconstructions of very ultrathin (20 nm) serial sections prepared from dendritic segments. It is believed that SER penetrate into the heads of thin and mushroom spines but mitochondria do not enter the heads of these types of spines in dentate gyrus or CA1 of either rat or ground squirrel. However, in CA3 we have shown here that mitochondria penetrate into the base of the large thorny excrescences. Mushroom dendritic spines (but not thin spines) contained puncta adherentia, formed between pre- and postsynaptic membranes. In contrast to dendrites, the mitochondrial population of axonal processes in the same hippocampal regions were found only in the form of discrete bodies no more than 3 microm in length. The issue of the likely function of this network in dendrites and its potential role in calcium movement is discussed
    corecore