133 research outputs found

    Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells

    Get PDF
    Background: Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation. Methodology/Principal Findings: Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples. Conclusions/Significance: We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.Singapore-MIT Alliance for Research and Technolog

    Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin

    Get PDF
    Haptoglobin (Hp) is an abundant and conserved plasma glycoprotein, which binds acellular adult hemoglobin (Hb) dimers with high affinity and facilitates their rapid clearance from circulation after hemolysis. Humans possess three main phenotypes of Hp, designated Hp 1-1, Hp 2-1, and Hp 2-2. These variants exhibit diverse structural configurations and have been reported to be functionally nonequivalent. We have investigated the functional and redox properties of Hb–Hp complexes prepared using commercially fractionated Hp and found that all forms exhibit similar behavior. The rate of Hb dimer binding to Hp occurs with bimolecular rate constants of ~0.9 μM−1 s−1, irrespective of the type of Hp assayed. Although Hp binding does accelerate the observed rate of HbO2 autoxidation by dissociating Hb tetramers into dimers, the rate observed for these bound dimers is three- to fourfold slower than that of Hb dimers free in solution. Co-incubation of ferric Hb with any form of Hp inhibits heme loss to below detectable levels. Intrinsic redox potentials (E1/2) of the ferric/ferrous pair of each Hb–Hp complex are similar, varying from +54 to +59 mV (vs NHE), and are essentially the same as reported by us previously for Hb–Hp complexes prepared from unfractionated Hp. All Hb–Hp complexes generate similar high amounts of ferryl Hb after exposure to hydrogen peroxide. Electron paramagnetic resonance data indicate that the yields of protein-based radicals during this process are approximately 4 to 5% and are unaffected by the variant of Hp assayed. These data indicate that the Hp fractions examined are equivalent to one another with respect to Hb binding and associated stability and redox properties and that this result should be taken into account in the design of phenotype-specific Hp therapeutics aimed at countering Hb-mediated vascular disease

    Alpha-hemoglobin stabilizing protein (AHSP) markedly decreases the redox potential and reactivity of alpha subunits of human HbA with hydrogen peroxide

    Get PDF
    Background: AHSP modifies redox properties of bound α subunits. Results: Isolated hemoglobin subunits exhibit significantly different redox properties compared to HbA. A significant decrease in the reduction potential of α subunits bound to AHSP results in preferential binding of ferric α. Conclusion: AHSP:α subunit complexes do not participate in ferric-ferryl heme redox cycling. Significance: AHSP binding to α subunits inhibits subunit pseudoperoxidase activity

    Evaluation of a Salt-Reduction Consumer Awareness Campaign Targeted at Parents Residing in the State of Victoria, Australia

    Full text link
    From 2015 to 2020 a state-wide salt-reduction initiative was launched in Victoria, Australia, including an awareness campaign focused on parents with children <18 years of age. To evaluate the impact of the campaign on salt-related knowledge, attitudes and behaviors (KABs) we have assessed trends in salt-related KAB pre- and post-delivery of the campaign in parents, as well as within the wider adult population. Cross-sectional surveys of adults aged 18–65 years were undertaken pre- (2015: n = 821 parents; n = 1527 general sample) and post-campaign (2019: n = 935 parents; n = 1747 general sample). KABs were assessed via an online survey. Data were analyzed with regression models and adjusted for covariates. Among parents, around one-quarter of salt-related KABs shifted in a positive direction, but changes were small: there was a 6% (95% CI 2, 11%) increase in the percentage who knew the main source of salt in the diet and reductions in the percentage who reported placing a salt shaker on the table (−8% (95%CI −12, −3)) and that their child added salt at the table (−5% (95% −9, −0.2)). Among the wider adult sample, even fewer shifts in KAB were observed, with some behaviors worsening at follow-up. These findings indicate that this consumer awareness campaign had minimum impact

    Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways.

    Get PDF
    Although genetic variation is a major risk factor of neurodevelopmental disorders, environmental factors during pregnancy and early life are also important in disease expression. Animal models demonstrate that maternal inflammation causes fetal neuroinflammation and neurodevelopmental deficits, and brain transcriptomics of neurodevelopmental disorders in humans show upregulated differentially expressed genes are enriched in immune pathways. We prospectively recruited 200 sequentially referred children with tic disorders/obsessive-compulsive disorder (OCD), 100 autoimmune neurological controls, and 100 age-matched healthy controls. A structured interview captured the maternal and family history of autoimmune disease and other pro-inflammatory states. Maternal blood and published Tourette brain transcriptomes were analysed for overlapping enriched pathways. Mothers of children with tics/OCD had a higher rate of autoimmune disease compared with mothers of children with autoimmune neurological conditions (p = 0.054), and mothers of healthy controls (p = 0.0004). Autoimmunity was similarly elevated in first- and second-degree maternal relatives of children with tics/OCD (p 0.0001 and p = 0.014 respectively). Other pro-inflammatory states were also more common in mothers of children with tics/OCD than controls (p 0.0001). Upregulated differentially expressed genes in maternal autoimmune disease and Tourette brain transcriptomes were commonly enriched in innate immune processes. Pro-inflammatory states, including autoimmune disease, are more common in the mothers and families of children with tics/OCD. Exploratory transcriptome analysis indicates innate immune signalling may link maternal inflammation and childhood tics/OCD. Targeting inflammation may represent preventative strategies in pregnancy and treatment opportunities for children with neurodevelopmental disorders

    Reviving the Philippine Economy under a Responsible New Normal

    Get PDF
    After the reclassification of areas under enhanced community quarantine (ECQ) to general community quarantine (GCQ), the urgent task for the Philippine government is to provide an exit plan to revive the Philippine economy. Given the significant economic damage resulting from the shutdown of roughly 75 percent of the country’s total production in the National Capital Region (NCR) and in the CALABARZON and Central Luzon areas, a gradual reopening of the economy will be necessary to prevent further economic damage that could not only be difficult to repair, but also long to overcome. Indeed, based on recent directives from the government, a substantial number of industries and services have thus been allowed to operate in both the ECQ and GCQ areas. However, as the Philippine government begins to calibrate the opening of sectors, there remain concerns as to how this process will affect jobs and livelihoods now and beyond. In this context, an economic recovery plan that talks about short-term, a transition, and full recovery phases— encompassing a revision of the current Philippine Development Plan without losing sight of the long-term goals envisioned in Ambisyon Natin 2040— is still needed. Indeed, a key component of AmBisyon 2040 has been of building resiliency over the long-term, which includes resiliency in health and economic shocks apart from natural disasters. At the same time, this recovery plan should also be accompanied by structural reforms to enhance its implementation. The Department of Finance has crafted a four-pillar socio-economic strategy aimed at: (a) supporting the more vulnerable sectors of society; (b) increasing medical resources to contain the virus and offer safety to front-liners; (c) keeping the economy afloat through financial emergency initiatives; and (d) creating jobs and sustaining the economy. Yet while enumerating the costs of these plans, the said strategy lacked details on how the country could achieve some of the goals without the availability of widespread testing and adequate health facilities. Loan guarantees, cash transfers, and other forms of subsidies can revive disrupted supply chains but cannot restore productivity in the middle of a persisting health crisis, while the uncertainty of a possible outbreak can keep workers from supplying goods and services. It is crucial to have these programs and institutions in place since a number of cities, regions and provinces have started to reopen. A modified community quarantine without the necessary health system investments, protection measures, and economic recovery plan risks amounting to an unregulated herd immunity strategy. Opting for herd immunity allows governments to blame the failure of the health and economic system on the virus, rather than on bad governance. Under current GCQ protocols, the burden on containing the virus is mostly transferred to the public. Unless the government provides mass testing, the problem of information is aggravated, probably raising the transmission risks. Moreover, unregulated herd immunity will be differentially felt by the poor. As healthy workers may recover their earnings from the modified quarantine, the poor, who have limited access to the health services and are thus more susceptible to the virus, are unlikely to benefit from this system. In effect, this will only exacerbate the inequality that prevails in the country. Moving towards a responsible new normal requires a strategy that addresses both people’s wellbeing and the socio-economic weaknesses exposed by COVID-19. Thus, the strategy should have the following elements

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore