549 research outputs found

    TESLA-X: An effective method to search for sub-threshold lensed gravitational waves with a targeted population model

    Full text link
    Strong gravitational lensing can produce copies of gravitational-wave signals from the same source with the same waveform morphologies but different amplitudes and arrival times. Some of these strongly-lensed gravitational-wave signals can be demagnified and become sub-threshold. We present TESLA-X, an enhanced approach to the original GstLAL-based TargetEd Subthreshold Lensing seArch (TESLA) method, for improving the detection efficiency of these potential sub-threshold lensed signals. TESLA-X utilizes lensed injections to generate a targeted population model and a targeted template bank. We compare the performance of a full template bank search, TESLA, and TESLA-X methods via a simulation campaign, and demonstrate the performance of TESLA-X in recovering lensed injections, particularly targeting a mock event. Our results show that the TESLA-X method achieves a maximum of 20%\sim 20\% higher search sensitivity compared to the TESLA method within the sub-threshold regime, presenting a step towards detecting the first lensed gravitational wave. TESLA-X will be employed for the LIGO-Virgo-KAGRA's collaboration-wide analysis to search for lensing signatures in the fourth observing run

    Clinical pattern of tolvaptan-associated liver injury in trial participants with autosomal dominant polycystic kidney disease (ADPKD): An analysis of pivotal clinical trials

    Get PDF
    RATIONALE & OBJECTIVE: Tolvaptan is associated with risk of drug-induced liver injury when used to treat autosomal dominant polycystic kidney disease (ADPKD). After this risk was described based on the clinical trials TEMPO 3:4 and TEMPO 4:4, additional data from the REPRISE trial and a long-term extension of TEMPO 4:4, REPRISE, and other tolvaptan trials in ADPKD have become available. To further characterize the hepatic safety profile of tolvaptan, an analysis of the expanded dataset was conducted. STUDY DESIGN: Analysis of safety data from prospective clinical trials of tolvaptan. SETTING & PARTICIPANTS: Multicenter clinical trials including more than 2,900 tolvaptan-treated participants, more than 2,300 with at least 18 months of drug exposure. INTERVENTION: Tolvaptan administered twice daily in split-dose regimens. OUTCOMES: Frequency of liver enzyme level increases detected by regular laboratory monitoring. RESULTS: In the placebo-controlled REPRISE trial, more tolvaptan- than placebo-treated participants (38 of 681 [5.6%] vs 8 of 685 [1.2%]) experienced alanine aminotransferase level increases to \u3e3× the upper limit of normal (ULN), similar to TEMPO 3:4 (40 of 957 [4.4%] vs 5 of 484 [1.0%]). No participant in REPRISE or the long-term extension experienced concurrent alanine aminotransferase level increases to \u3e3× ULN and total bilirubin increases to \u3e2× ULN ( Hy\u27s Law laboratory criteria). Based on the expanded dataset, liver enzyme increases most often occurred within 18 months after tolvaptan initiation and were less frequent thereafter. Increased levels returned to normal or near normal after treatment interruption or discontinuation. Thirty-eight patients were rechallenged with tolvaptan after the initial drug-induced liver injury episode, with return of liver enzyme level increases in 30; 1 additional participant showed a clinical adaptation after the initial episode, with resolution of the enzyme level increases despite continuation of tolvaptan. LIMITATIONS: Retrospective analysis. CONCLUSIONS: The absence of Hy\u27s Law cases in REPRISE and the long-term extension trial support monthly liver enzyme monitoring during the first 18 months of tolvaptan exposure and every 3 months thereafter to detect and manage enzyme level increases, as is recommended on the drug label. FUNDING: Otsuka Pharmaceutical Development & Commercialization, Inc. TRIAL REGISTRATION: Trials included in the dataset were registered at ClinicalTrials.gov with study numbers NCT00428948 (TEMPO 3:4), NCT01214421 (TEMPO 4:4), NCT02160145 (REPRISE), and NCT02251275 (long-term extension)

    Biophysical Studies of Bacterial Topoisomerases Substantiate Their Binding Modes to an Inhibitor

    Get PDF
    AbstractBacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G+) and Gram-negative (G−) bacteria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a G+ strain (Streptococcus pneumoniae (sParE)) and a G− strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four regions in ParE that are important for inhibitor binding, namely, α2, the loop between β2 and α3, and the β2 and β6 strands. Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in α2 of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better understanding of the development of broad-spectrum antibacterial agents

    Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays

    Get PDF
    Loss of heterozygosity (LOH) of chromosomal regions bearing tumor suppressors is a key event in the evolution of epithelial and mesenchymal tumors. Identification of these regions usually relies on genotyping tumor and counterpart normal DNA and noting regions where heterozygous alleles in the normal DNA become homozygous in the tumor. However, paired normal samples for tumors and cell lines are often not available. With the advent of oligonucleotide arrays that simultaneously assay thousands of single-nucleotide polymorphism (SNP) markers, genotyping can now be done at high enough resolution to allow identification of LOH events by the absence of heterozygous loci, without comparison to normal controls. Here we describe a hidden Markov model-based method to identify LOH from unpaired tumor samples, taking into account SNP intermarker distances, SNP-specific heterozygosity rates, and the haplotype structure of the human genome. When we applied the method to data genotyped on 100 K arrays, we correctly identified 99% of SNP markers as either retention or loss. We also correctly identified 81% of the regions of LOH, including 98% of regions greater than 3 megabases. By integrating copy number analysis into the method, we were able to distinguish LOH from allelic imbalance. Application of this method to data from a set of prostate samples without paired normals identified known regions of prevalent LOH. We have developed a method for analyzing high-density oligonucleotide SNP array data to accurately identify of regions of LOH and retention in tumors without the need for paired normal samples

    Epidemiology of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Enterobacterales in the Greater Mekong Subregion: A Systematic-Review and Meta-Analysis of Risk Factors Associated With Extended-Spectrum Beta-Lactamase and Carbapenemase Isolation.

    Get PDF
    BACKGROUND: Despite the rapid spread of extended-spectrum beta-lactamase (ESBL) producing-Enterobacterales (ESBL-E) and carbapenemase-producing Enterobacterales (CPE), little is known about the extent of their prevalence in the Greater Mekong Subregion (GMS). In this systematic review, we aimed to determine the epidemiology of ESBL-E and CPE in clinically significant Enterobacterales: Escherichia coli and Klebsiella pneumoniae from the GMS (comprising of Cambodia, Laos, Myanmar, Thailand, Vietnam and Yunnan province and Guangxi Zhuang region of China). METHODS: Following a list of search terms adapted to subject headings, we systematically searched databases: Medline, EMBASE, Scopus and Web of Science for articles published on and before October 20th, 2020. The search string consisted of the bacterial names, methods involved in detecting drug-resistance phenotype and genotype, GMS countries, and ESBL and carbapenemase detection as the outcomes. Meta-analyses of the association between the isolation of ESBL from human clinical and non-clinical specimens were performed using the "METAN" function in STATA 14. RESULTS: One hundred and thirty-nine studies were included from a total of 1,513 identified studies. Despite the heterogeneity in study methods, analyzing the prevalence proportions on log-linear model scale for ESBL producing-E. coli showed a trend that increased by 13.2% (95%CI: 6.1-20.2) in clinical blood specimens, 8.1% (95%CI: 1.7-14.4) in all clinical specimens and 17.7% (95%CI: 4.9-30.4) increase in carriage specimens. Under the log-linear model assumption, no significant trend over time was found for ESBL producing K. pneumoniae and ESBL-E specimens. CPE was reported in clinical studies and carriage studies past 2010, however a trend could not be determined because of the small dataset. Twelve studies were included in the meta-analysis of risk factors associated with isolation of ESBL. Recent antibiotic exposure was the most studied variable and showed a significant positive association with ESBL-E isolation (pooled OR: 2.9, 95%CI: 2.3-3.8) followed by chronic kidney disease (pooled OR: 4.7, 95%CI: 1.8-11.9), and other co-morbidities (pooled OR: 1.6, 95%CI: 1.2-2.9). CONCLUSION: Data from GMS is heterogeneous with significant data-gaps, especially in community settings from Laos, Myanmar, Cambodia and Yunnan and Guangxi provinces of China. Collaborative work standardizing the methodology of studies will aid in better monitoring, surveillance and evaluation of interventions across the GMS

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis

    Get PDF
    Although the link between inflammation and cancer initiation is well established, its role in metastatic diseases, the primary cause of cancer deaths, has been poorly explored. Our previous studies identified a population of metastasis-associated macrophages (MAMs) recruited to the lung that promote tumor cell seeding and growth. Here we show that FMS-like tyrosine kinase 1 (Flt1, also known as VEGFR1) labels a subset of macrophages in human breast cancers that are significantly enriched in metastatic sites. In mouse models of breast cancer pulmonary metastasis, MAMs uniquely express FLT1. Using several genetic models, we show that macrophage FLT1 signaling is critical for metastasis. FLT1 inhibition does not affect MAM recruitment to metastatic lesions but regulates a set of inflammatory response genes, including colony-stimulating factor 1 (CSF1), a central regulator of macrophage biology. Using a gain-of-function approach, we show that CSF1-mediated autocrine signaling in MAMs is downstream of FLT1 and can restore the tumor-promoting activity of FLT1-inhibited MAMs. Thus, CSF1 is epistatic to FLT1, establishing a link between FLT1 and inflammatory responses within breast tumor metastases. Importantly, FLT1 inhibition reduces tumor metastatic efficiency even after initial seeding, suggesting that these pathways represent therapeutic targets in metastatic disease

    Electromagnetic signatures of far-field gravitational radiation in the 1+3 approach

    Get PDF
    Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.Comment: Published versio

    The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures

    Get PDF
    Background: The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. Results: We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. Conclusions: We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vulturesopen

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore