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ABSTRACT Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for devel-
oping antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed.
However, the development of potent broad-spectrum inhibitors against both Gram-positive (Gþ) and Gram-negative (G�) bac-
teria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions
between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a Gþ strain
(Streptococcus pneumoniae (sParE)) and a G� strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the
inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed
for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four
regions in ParE that are important for inhibitor binding, namely, a2, the loop between b2 and a3, and the b2 and b6 strands.
Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in a2
of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better
understanding of the development of broad-spectrum antibacterial agents.
INTRODUCTION
The discovery of novel antibacterial agents is of great interest
because drug-resistant bacteria have become a serious prob-
lem (1–3). In recent years, new antibiotics such as tigecycline
and carbapenems (1,4) have been approved to tackle drug-
resistant bacteria. However, resistance against these newly
developed compounds usually emerges rapidly after they
have been introduced into clinical practice (5–7). Therefore,
there exists a great need for new antibacterial agents, espe-
cially compounds with a novel mechanism of action (8,9).

The bacterial DNA topoisomerases are attractive drug
targets because of their importance in DNA replication and
their low homology with eukaryotic topoisomerases
(8–10). Bacterial DNA topoisomerases are essential for
bacterial growth because they control the interconversion
of different topological forms of DNA. Unlike eukaryotic
topoisomerases, prokaryotic topoisomerases are functional
as heterotetramers. Bacteria express two forms of type II top-
oisomerases: DNA gyrase and topoisomerase IV (Topo IV)
(8). DNA gyrase can relax supercoiled plasmid DNA and
plays an important role in DNA replication and transcription
(11). Topo IV is required for proper chromosome separation
and plays an important role in the maintenance of DNA
supercoiling in bacteria. Both of these topoisomerase II mol-
ecules exist as protein complexes made up of two subunits:
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GyrA and GyrB for gyrase, and ParC and ParE for Topo
IV. Both GyrB and ParE have similar structures and have
been pursued as drug targets by a number of groups (12–14).

The prototypical inhibitor of GyrB and ParE is the natural
product novobiocin, an aminocoumarin that binds to the ATP
site (15–17). Structure-based design has been used for
the optimization of a number of scaffolds, and potent
inhibitors that target both GyrB and ParE have been
identified (12,13,18). We were interested in using a
structure-based approach to design GyrB/ParE inhibitors
for Gram-negative (G�) bacteria, especially Pseudomonas
aeruginosa (P. ae). Previous approaches for structure-
based optimization have often relied on available GyrB/
ParE x-ray structures from Escherichia coli and Strepto-
coccus pneumonia (S. pn) (12,13,18–21). However, it is
unclear whether these structures are suitable for the design
of inhibitors that target ESKAPE pathogens (Enterococcus
faecium, Staphylococcus aureus,Klebsiella pneumonia,Aci-
netobacter baumannii, P. ae, and Enterobacter species) (12).

In this report, we describe the results of our structural
analysis of ParE in solution using NMR spectroscopy. The
binding of an inhibitor against ParE was characterized by
surface plasmon resonance (SPR). In this study, we used
two ParEs containing the 24 kDa fragment of the E-subunit
of Topo IV: sParE from a Gram-positive (Gþ) strain (S. pn)
and pParE from a G� strain (P. ae). First, using NMR, we
showed that both ParEs bind to a pyridylurea inhibitor. Sec-
ond, we obtained backbone resonance assignments for these
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two ParEs in the absence and presence of the inhibitor to un-
derstand the solution structures of the ParEs. Third, we con-
ducted chemical-shift perturbation (CSP) experiments to
compare inhibitor binding. Fourth, we analyzed the ParE-in-
hibitor complexes using nuclear Overhauser enhancements
(NOEs) between the protein and the inhibitor. Lastly, using
SPR, we tested the binding affinity between the inhibitor
and ParEs and their mutants in the a2 helix. Our results sug-
gest that the inhibitor binds to both pParE and sParE in the
same mode. However, minor changes in the amino acid in
the protein sequence gave rise to a significant discrepancy
in the magnitude of inhibitor binding.
MATERIALS AND METHODS

Sample preparation

To produce ParEs, cDNA encoding sParE encompassing residues 1–228 of

the E-subunit of Topo IVof S. pn was synthesized by Genscript. cDNA en-

coding pParE encompassing residues 1–218 of the E-subunit of Topo IVof

P. ae was amplified using the genome of P. ae as a template. The cDNA of

sParE or pParE was cloned into the NdeI and XhoI sites of the pET29b,

respectively. The resulting plasmid encodes the N-terminal active domain

of ParE, with an extra tag containing seven residues (EHHHHHH) at the

C-terminus for protein purification. To express ParEs from E. coli for

NMR studies, the plasmidwas transformed inE. coli (BL21DE3)-competent

cells and plated onto an LB plate containing antibiotics. The protein was ex-

pressed and purified using a protocol similar to that described by Kim et al.

(22). Briefly, several colonies from the LB plate were picked up and inocu-

lated in 20mL ofM9medium. The overnight culture at 37�Cwas transferred

into 1 L of M9 medium supplemented with 30 mg/mL of kanamycin. When

A600 reached 0.6–0.8, proteinwas induced for 18 h at 18
�C by adding b-D-1-

thiogalactopyranoside to 1 mM. The E. coli cells were harvested by centri-

fugation at 8000�g for 10 min at 4�C. The cell pellet was resuspended in a
buffer containing 20 mM sodium phosphate (pH 7.8), 500 mM NaCl, and

2 mM b-mercaptoethanol. Cells were then broken up by sonication and

cell lysates were cleared by centrifugation at 20,000 � g and 4�C for

20 min. The protein was then purified using a gravity column with nitrilotri-

acetic acid saturated with nickel (Ni2þ-NTA) resin. Purified protein from the

Ni-NTA2þ resinwas further purified by gel filtration chromatography using a

Superdex 200 column. For the sParE, protein was prepared in a buffer

containing 20 mM sodium phosphate (pH 6.5), 80 mM KCl, 2 mM dithio-

threitol, and 0.5 mM EDTA. For the pParE, protein was prepared in a buffer

containing 20 mM sodium phosphate (pH 6.5), 180 mM KCl, 2 mM dithio-

threitol, and 0.5 mM EDTA to prevent sample precipitation. To prepare a
13C-, 15N-, and 2H-labeled protein, protein was expressed in M9 medium

containing 1 g/L 15NH4Cl, 2 g/L
2H-13C-glucose, andD2O (99.9%). The pro-

tein was concentrated to 0.5–0.8 mM for NMR studies.
Backbone resonance assignment

Uniformly 15N- or 13C, 15N-, and 2H-labeled proteins were used in NMR

data acquisition. For free sParE and pParE, backbone resonance was as-

signed based on two-dimensional and three-dimensional (3D) experiments

and transverse relaxation-optimized spectroscopy (TROSY) (23,24)-

based experiments, including HSQC, HNCACB, HNCOCACB, HNCA,

HNCOCA, HNCACO, and HNCO. For ParEs and inhibitor complexes,

the protein was mixed with the inhibitor in a molar ratio of 1:1.2. The

compound was prepared in deuterated-dimethyl sulfoxide (d-DMSO) to a

60 mM concentration. The backbone resonance assignment of the sParE-in-

hibitor complex was referenced to the assignment of free sParE and an

HNCACB experiment. For the backbone assignment of the pParE-inhibitor
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complex, we conducted various experiments, including 1H-15N-HSQC,

HNCACB, HNCOCACB, HNCA, HNCOCA, HNCACO, and HNCO. All

of these experiments were conducted at 25�C on a Bruker Avance 700

spectrometer. All of the pulse programs were obtained from the Topspin

(2.1) pulse library. Spectra were processed with NMRPipe (25) or Topspin

and analyzed using NMRView (26) and CARA (http://www.mol.biol.ethz.

ch/groups/wuthrich_group). Secondary structure was predicted using

TALOSþ based on the backbone chemical shifts (27).
Protein-inhibitor 1 interactions

To probe ParE and inhibitor interactions, inhibitor from a stock solution

(60 mM) in d-DMSO was added into a 13C-, 15N-, and 2H-labeled ParE

sample. 1H-15N-HSQC spectra were acquired and processed. CSPs after

the addition of inhibitor were monitored (28). The combined chemical-shift

change (Dd) was calculated using the equation Dd ¼ [(DdHN)
2 þ (DdN/

5)2]0.5, where DdHN is the chemical-shift changes for the amide proton

dimension and DdN is the chemical-shift changes for the amide dimension

(28). To obtain protein-inhibitor intermolecular NOEs, a NOESY-TROSY

experiment with a mixing time of 100mswas recorded for a sample contain-

ing 13C-, 15N-, and 2H-labeled ParE and inhibitor with a molar ratio of 1:1.2.
SPR measurements

SPR experiments were performed on a BIAcore-2000 system (GE Health-

care). Interactions between the ParEs and the compound were analyzed on

CM5 chips. The protein was first immobilized on a CM5 sensor chip (GE

Healthcare) via amine coupling. For immobilization, the systemwas initially

primed with HEPES-buffered saline with a flow rate of 10 mL/min. The

carboxylated dextran matrix was activated by a 7-min injection of a solution

containing 200 mM 1-ethyl-3-(3-diethylaminopropyl)-carbodiimide and

50 mMN-hydroxysuccinimide. The protein was diluted to a final concentra-

tion of 20 mg/mL in 10 mM sodium acetate, pH 5, and then injected until a

final immobilization level of ~5500 response units was reached. Finally,

the rest of the surfacewas deactivated with a 7-min injection of 1M ethanol-

amine hydrochloride. Binding experiments were performed at 25�C in a

running buffer containing 10 mM HEPES (pH 7.5), 150 mM NaCl, 3 mM

EDTA, and 0.005% v/v surfactant P20. The buffer was filtered and degassed

before it was used. The compound was diluted with a running buffer before

injection at a flow rate of 30 mL/min. For the binding experiment with sParE,

single-cycle kinetics was used. Association was observed for 60 s and disso-

ciation was observed for 420 s. For the binding experiment with pParE and

mutants, multicycle kinetics was used. Association was observed for 60 s

and dissociationwas observed for 60 s. As the dissociation of the compounds

from pParE was rapid, no regeneration protocol was applied. For all binding

experiments, solvent correction was conducted to diminish the difference in

a refractive index between the samples and running buffer. The binding data

were analyzed using BIAcore T2000 Evaluation software version 2.0 (GE

Healthcare). Dissociation constant (KD) values were determined by fitting

the data to a 1:1 steady-state binding model.
Structural modeling of pParE

A tertiary structural model of pParE was built using the SWISS-MODEL

(29) server (http://swissmodel.expasy.org/). The x-ray crystal structure of

eParE in complex with adenylyl-imidodiphosphate (Protein Data Bank

(PDB) ID: 1S16) was used as a template because these two proteins have

77% sequence identity (30).
Thermal stability assay

We analyzed the thermal stability of the wild-type and mutant ParEs by us-

ing a ThermoFluor assay as described previously (31). Assay mixtures
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containing 1.8 mMprotein, 15� Sypro Orange dye in a buffer that contained

50 mM HEPES (pH 7.4), 250 mM NaCl, 5 mM MgCl2, and 2.5% DMSO

were subjected to an increase in temperature from 30�C to 80�C in 0.5�C
increments at 20 s intervals. The melting temperature (Tm) was obtained

from the curve.
RESULTS

Sample preparation of ParEs and an inhibitor for
NMR studies

Potent ParE inhibitors have been developed by means of
structure-based drug design (12–14). A class of inhibitors
with pyridylurea scaffolds was shown to target the ATPase
domains of topoisomerases (18). Although structures of the
ATPase domains of ParE and GyrB from several bacteria
have been solved using crystallography, the structures of
ParE/GyrB of P. ae, an important pathogen, are still not
available. We carried out NMR experiments to understand
the differences in interactions between the ParEs of P. ae
and S. pn with a bis-pyridylurea inhibitor. We chose to use
the bis-pyridylurea scaffold because it was shown in a
previous study (18) to have different biochemical and cell ac-
tivities against ParEs fromGþ and G� bacteria. In that study,
inhibitor 1 (Fig. S1 in the Supporting Material) had a mini-
mal inhibitory concentration (MIC) value of 2mg/mL against
S. pn and >64 mg/mL against E. coli (18). The structure of
sParE with inhibitor 1 was also reported in that study and
was used as a reference for our NMR studies. We expressed
and purified the ATPase domains of the ParEs of both P. ae
and S. pn from E. coli (Fig. S1). We found that pParE was
not as stable as sParE, with the former showing precipitation
when the protein sample was kept at room temperature for
1 day. More salt (180 mM KCl) was added to the sample
buffer to prevent pParE aggregation. We synthesized a bis-
pyridylurea inhibitor with an IC50 of <0.01 mM against
ParE of S. pn as described in the literature (18).
The ParE-inhibitor 1 interaction undergoes a slow
exchange

To confirm the interaction between ParEs and inhibitor 1 in
solution, we carried out titration experiments by adding
different amounts of inhibitor 1 to a 15N-labeled sample.
For both ParEs, CSP was observed, confirming their interac-
tion with the inhibitor. When the inhibitor was titrated in the
sample, free signal disappeared gradually and bound signal
appeared (Fig. 1). These results suggest that the interaction
undergoes a slow exchange, which is not surprising for in-
hibitors with a nanomolar binding affinity (18,31).
Backbone assignment and structural analysis of
both ParEs

We obtained backbone assignments for the two ParEs by
conducting conventional 3D experiments. For sParE, we
were able to obtain a>90% backbone resonance assignment
in the absence of the inhibitor, and this assignment has been
deposited in the Biological Magnetic Resonance Bank
(BMRB) under accession number 26610 (Fig. S2). The
assignment for the 1H-15N-HSQC spectrum of sParE in
complex with the inhibitor was obtained by referencing
the assignment of its free form and analyzing the 3D-
HNCACB experiment of the complex. This assignment
has been deposited in the BMRB under accession number
26611 (Fig. S3). For the assignment of pParE, a >90%
backbone resonance assignment was obtained first for the
protein in complex with the inhibitor (BMRB accession
number 26609; Fig. S3). The backbone assignment of free
pParE was achieved by using conventional 3D experiments
and referencing to the assignment of its inhibitor-bound
form (BMRB accession number 26608; Fig. S4). With the
backbone resonance assignment in hand, we conducted a
secondary-structure analysis for both ParEs in the presence
and absence of the inhibitor using TALOSþ (27). The sec-
ondary structures of the ParEs in the absence and presence
of the inhibitor are similar to those observed in the x-ray
crystal structure of the sParE-inhibitor complex, except
that a1 is shorter in pParE (Fig. 2 A).
Structural modeling of the pParE in complex with
the inhibitor

The ParE N-terminal domains (active domains) in bacteria
share high sequence homology. X-ray structural studies
have demonstrated that these domains contain eight b-
strands backed on the side by five helices (Fig. 2 B) (32–
34). The active domain of ParE from E. coli shares 77%
sequence identity with pParE. We built a homology model
of pParE using the x-ray crystal structure of ParE of
E. coli (eParE) as a template (Fig. 2 B). Although pParE
shares high sequence homology with eParE, we still
analyzed the NOE spectrum to confirm the existence of
the b-strand structures in the pParE model (Fig. 2 C).
TALOSþ analysis based on backbone chemical shifts sug-
gested that eight strands are present in pParE. To confirm
the existence of the b-strands, we analyzed the NOE exper-
iment. Longer-range NOEs between amide protons were
observed (Fig. 2 C), suggesting that the modeled structure
is reliable. The difference between the solution NMR study
and model is that the modeled structure contains a longer
helix a1 and a2, which may arise from the fact that this
N-terminal region is more flexible in solution.
Inhibitor binding sites on ParEs determined by
CSPs and NOEs

As the x-ray crystal structure of the sParE- bis-pyridylurea
inhibitor complex was available (18), we conducted
NMR studies to confirm the protein-inhibitor interaction
in solution. First, we compared the chemical-shift changes
Biophysical Journal 109(9) 1969–1977



FIGURE 1 Interaction between ParEs and inhib-

itor 1 revealed by NMR. (A) 1H-15N-HSQC spectra

of sParE in the presence and absence of inhibitor 1.

(B) 1H-15N-HSQC spectra of pParE in the presence

and absence of inhibitor 1. Spectra in the absence

and presence of the inhibitor are shown in

black and red, respectively. Some residues that

showed chemical-shift changes are indicated with

arrows. (C) Titration study for sParE and inhibitor

1. Only residues G80 and G152 are shown. (D)

Titration study for pParE and inhibitor 1. Only re-

sults for G72 and M73 are shown. The black line

indicates the free protein. Red line indicates the in-

hibitor 1-bound ParE. To see this figure in color, go

online.
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of the sParE signal in the 1H-15N-HSQC spectrum caused
by inhibitor binding. CSPs were plotted against residue
numbers (Fig. 3 A). It was demonstrated that residues
from a2, b2, b6, the loop between b2 and a3, and a4
were important for the inhibitor interaction (Fig. 3 A). The
most affected residues (CSP > 0.3 ppm) included residues
49, 52, 55, 77, 78, 80–83, 85, 96, 141, and 174. Residues
with CSPs between 0.2 and 0.3 ppm included residues 48,
51, 53, 54, 98, 122, 123, 125, 137, 138, 140, 142, 171,
170, and 173 (Fig. 3 A). pParE and sParE showed similar
binding patterns. The amino acids in pParE that were most
affected by compound binding, with CSP > 0.3 ppm,
included residues 38, 39, 43, 45, 67, 71–73, 86, 87, and
164. Residues with CSPs between 0.2 and 0.3 ppm included
residues 42, 46, 47, 50, 75, 85, 89, and 115 (Fig. 3 B). It is
interesting that residues from b3 of sParE, including E137,
I138, R140, D141, and G142, showed clear CSP upon inhib-
itor binding, whereas no residue from this region of pParE
showed any CSP (Fig. S6). It is possible that this difference
may give rise to different binding affinities to the inhibitor.

To further understand the orientation of the inhibitor in
complex with the ParEs in solution, we carried out a
NOESY-TROSY experiment using a 15N/13C/2H-labeled
sample mixed with the inhibitor. Since the aliphatic and
Biophysical Journal 109(9) 1969–1977
Ha protons of ParE are replaced with deuterium, the signals
observed in the NOESY experiment will be the NOEs be-
tween amide protons from ParE and protons from the inhib-
itor. For sParE, NOEs between residues from a2, b2, b6, and
the loop between b2 and a3 and inhibitor 1 were observed,
which is in agreement with the x-ray structure of the com-
plex (Fig. 3, C and D). For pParE, residues from the same
regions showed NOEs with the inhibitor, suggesting that it
binds to pParE in an orientation similar to that observed
for sParE (Fig. 3 D).
Inhibitor 1 binds to both ParEs with different
affinities

We measured the binding of inhibitor 1 against both ParEs
using SPR. The SPR studies showed that inhibitor 1 has
an affinity of KD ¼ 6.9 nM against sParE (Fig. 4 A) and
KD¼ 750 nM against pParE (Fig. 4 B). In an effort to under-
stand why the inhibitor binds to sParEs with 100-fold more
potency than pParE, we made mutations in a2, which is an
important region for inhibitor binding. sParE has an alanine
residue at position 52. In pParE, the equivalent residue is
Ser-42. Both residues exhibited NOEs with the methyl
group of the inhibitor (Fig. 3 C). It is hypothesized that



FIGURE 2 Structural analysis of pParE and sParE. (A) Secondary-structure analysis of ParEs in the presence of inhibitor 1. The secondary structure of the

proteins was obtained based on TALOSþ prediction (27). The secondary structure derived from the x-ray structure of sParE (PDB ID: 4LP0) is shown with

black lines and labeled as x-ray. The a-helix, b-strand, and loop are shown with a box, arrow, and line, respectively. The NMR structural information for

sParE and pParE is indicated by blue and red lines, respectively. (B) Homology model of pParE. Left panel: structural topology of the ParEs’ active domain.

The a-helix, b-strand, and loop are shown with a box, arrow, and line, respectively. Middle panel: structure of sParE. This structure was plotted using PyMOL

(http://www.pymol.org). For clarity, inhibitor 1 (PDB ID: 4LP0) is not shown. Right panel: homology model of pParE. The homology model was obtained as

described in Materials and Methods. (C) Verification of the model by NOE experiments. Left panel: residues forming b-strand structures based on TALOSþ
analysis. Lines are NOEs observed for the b-strands. Right panel: NOE observed in b-strands. Selected strip plots were obtained from a NOESY-TROSY

experiment of pParE in complex with inhibitor 1. Residues having NOEs with L58, V129, V164, and V199 are labeled with the residue name and sequence

number. To see this figure in color, go online.
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the difference in the amino acid side chain (A versus S) is
the cause of the binding discrepancy between the two en-
zymes. Additionally, the published x-ray crystal structure
of the sParE-inhibitor complex reveals that the Cb carbon
of A52 makes close contact with the methyl group of the in-
hibitor, leading to a favorable hydrophobic interaction. To
test this hypothesis, we made two ParE mutants. SPR studies
showed that sParE A52S and pParE S42A exhibited a KD of
32 nM and 297 nM, respectively, against the inhibitor
(Fig. 4, C and D). For the pParE S42A mutation, the off-
rate was reduced from 0.89 5 0.005 to 0.15 5 0.0037 S�

(Fig. 4 E). As expected, compared with wild-type proteins,
Biophysical Journal 109(9) 1969–1977
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FIGURE 3 ParE-inhibitor 1 interaction. (A) CSP caused by inhibitor 1 binding. Left panel: CSP plotted against residue number. Right panel: residues of

sParE that showed CSP in the presence of the inhibitor. The structure of sParE (PDB ID: 4LP0) is shown. For clarity, the inhibitor is not shown in the figure.

(B) CSP of pParE induced by inhibitor 1. Left panel: CSP plotted against residue number. Right panel: residues of pParE that showed CSP in the presence of

inhibitor 1. The model of pParE is shown. For clarity, the loop between a3 and a4 is not shown. (C) NOEs between sParE and inhibitor 1. Left panel: inhibitor

1 obtained in the crystal structure (PDB ID: 4LP0). Protons having NOEs with proteins are labeled in lowercase letters. Middle panel: crystal structure of the

sParE and inhibitor 1 complex. Left panel: NOEs observed between amide protons and inhibitor protons. Right panel: strip plot of the NOESY-TROSY spec-

trum of sParE-inhibitor complex. (D) Strip plot of the NOESY-TROSY spectrum of pParE. Residues having NOEs with inhibitor 1 are shown in the left panel.

Right panel: the modeled pParE-inhibitor 1 complex. The ParE-inhibitor 1 model was generated by aligning the modeled pParE structure and inhibitor 1

structure to the sParE-inhibitor 1 complex (PDB ID: 4LP0). The Ca atoms of residues with CSPs are shown with a sphere. Residues with CSPs of >0.3

ppm, 0.2–0.3 ppm, and 0.1–0.2 ppm are shown in red, brown, and yellow, respectively. To see this figure in color, go online.
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FIGURE 4 SPR results for ParE and inhibitor 1

interactions. (A) sParE and inhibitor 1 interaction.

(B) pParE and inhibitor 1 interaction. (C) sParE

A52S and inhibitor 1 interaction. (D) pParE

S42A and inhibitor 1 interaction. (E) SPR and ther-

mal stability assay of ParEs. To see this figure in

color, go online.
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mutation of sParE at position 52 to the residue in pParE
reduced its binding affinity. On the other hand, mutation
of pParE to the residue in the corresponding sParE showed
enhanced binding affinity. NMR studies showed that the
mutation did not cause conformational changes (Fig. S7).
We also carried out a thermal stability assay to assess the ef-
fect of the mutation on protein stability (Figs. 4 D and S8).
The Tm of wild-type sParE and pParE was 47.6�C and
43.5�C, respectively. Interestingly, the Tm of sParE A52S
and pParE S42Awas 44.6�C and 48.2�C, respectively. Pro-
tein stability may contribute to the inhibitor binding affinity
or affect the off-rate. It is surprising to observe such large
changes for a protein with a single mutation, suggesting
that one should conduct careful structure-activity relation-
ship studies before applying the structural data for a Gþ bac-
teria inhibitor to the design of a G� bacteria inhibitor.
DISCUSSION

We prepared pParE and sParE to characterize their interac-
tions with inhibitor 1. Since structural data for pParE have
not yet been reported, we were especially interested in
examining the difference between the two proteins with re-
gard to molecular recognition. Both ParEs produced a well-
dispersed 1H-15N-HSQC spectrum (Fig. 1) and were shown
to form tight complexes with inhibitor 1 in solution (Fig. 4).
A slow exchange between ParE and inhibitor 1 was
observed and the complexes were stable during NMR data
acquisition, which is consistent with the SPR results (Figs.
1 and 4 E). Additionally, the overall fold of the two proteins
was very similar in solution, which is not surprising since
they share high sequence homology (Fig. 3). Predictably,
the NMR data confirmed binding of inhibitor 1 at the ATP
pocket for both sParE and pParE (Fig. 3). Importantly,
although inhibitor 1 bound to both pParE and sParE with
a KD in the nanomolar range, the binding did not cause
any secondary changes on ParEs (Figs. S2–S5). To our
knowledge, our results provide the first structural evidence
that such inhibitors affect the chemical environment around
the ATP binding site without causing any secondary struc-
tural changes on ParEs.

Our SPR study demonstrated, however, that the binding
affinity of inhibitor 1 to pParE is 100-fold weaker than that
to sParE (Fig. 4). This difference may arise from the differ-
ence in amino acids in the ATP binding pocket (Fig. S6).
Upon inspection of the sParE-inhibitor 1 crystal structure
(18), we noticed that the compound interacts with A52.
The equivalent position in pParE is Ser-42. Since a previ-
ous study by Bellon et al. (30) showed that a single residue
was responsible for the differential inhibition of E. coli
Biophysical Journal 109(9) 1969–1977



1976 Kang et al.
GyrB and E. coli ParE by novobiocin, we decided to inves-
tigate the effect of swapping these residues between sParE
and pParE.

Mutation of A at position 52 of sParE to a serine residue
at the equivalent position of pParE resulted in a protein
(A52S) with a lower binding affinity to the inhibitor than
the wild-type (Fig. 4). On the other hand, the S42A muta-
tion of pParE showed a higher inhibitor binding affinity
than the wild-type. These single mutations did not cause
any structural changes as shown by NMR spectroscopy
(Fig. S7). Interestingly, the Tm values of the mutant
proteins were significantly different from those of their
wild-type analogs (Figs. 4 and S8). CSP experiments also
showed that the inhibitor bound to the ATP binding pocket.
A difference was also observed for these two ParEs (Figs. 3
and S6), which may have contributed to the different KD

values. These findings also suggest that inhibitor 1 did
not induce global conformation changes in ParE proteins
from G� and Gþ bacteria. Instead, differences in binding
affinity were due to differences in amino acids at the
active site. To overcome this challenge in developing
broad-spectrum antibacterial agents, researchers need to
carefully investigate protein-inhibitor interactions using
different biophysical experiments. Furthermore, our results
also imply that drug-discovery teams working on G� path-
ogens should use proteins from the targeted bacteria for
their assays, since a small structural difference can have
a large impact on inhibitor potency.

In conclusion, we have reported the first (to our knowl-
edge) structural data for the ParE protein of P. ae and studied
its interactions with a known bis-pyridylurea inhibitor in
solution. The results presented here, obtained from various
biophysical experiments, provide a better understanding of
the development of lead compounds against sParE and
pParE, and will aid the discovery of more potent inhibitors
for Gþ and G� pathogens.
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