14 research outputs found

    The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    Get PDF
    BACKGROUND:The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS:Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE:The Convention on International Trade Endangered Species (CITES) requires that listed species must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern bluefin tuna for CITES listing in 2010

    Targeted diversity generation by intraterrestrial archaea and archaeal viruses

    No full text
    Paul BG, Bagby SC, Czornyj E, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications. 2015;6(1): 6585.In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >10(18) protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses

    Identification of a Chitin-Induced Small RNA That Regulates Translation of the tfoX Gene, Encoding a Positive Regulator of Natural Competence in Vibrio cholerae▿†

    No full text
    The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)2 is needed to activate the transcription and translation of V. cholerae tfoX (tfoXVC) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoXVC. A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoXVC::lacZ translational fusion constructed in Escherichia coli. Using a tfoXVC::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoXVC expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)2 was provided. The introduction of a plasmid clone carrying the tfoR+ gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)2. Finally, we showed that this sRNA activated translation from tfoXVC mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)2, TfoR sRNA is expressed to activate the translation of tfoXVC, which leads to the induction of natural competence
    corecore