3 research outputs found

    Search for the standard model Higgs boson produced in association with top quarks and decaying into a b¯b pair in pp collisions at √s=13  TeV with the ATLAS detector

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair, t¯tH, is presented. The analysis uses 36.1  fb−1 of pp collision data at √s=13  TeV collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search targets the H→b¯b decay mode. The selected events contain either one or two electrons or muons from the top-quark decays, and are then categorized according to the number of jets and how likely these are to contain b-hadrons. Multivariate techniques are used to discriminate between signal and background events, the latter being dominated by t¯t+jets production. For a Higgs boson mass of 125 GeV, the ratio of the measured t¯tH signal cross-section to the standard model expectation is found to be μ=0.84+0.64−0.61. A value of μ greater than 2.0 is excluded at 95% confidence level (C.L.) while the expected upper limit is μ<1.2 in the absence of a t¯tH signal.We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), Ainfo:eu-repo/semantics/publishedVersio

    Search for flavor-changing neutral currents in top quark decays t\u2192Hc and t\u2192Hu in multilepton final states in proton-proton collisions at s=13\u2009\u2009TeV with the ATLAS detector

    No full text

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at s=13\u2009\u2009TeV with the ATLAS detector

    No full text
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1). Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z' boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles
    corecore