49 research outputs found

    Free electron laser high gain devices

    Get PDF
    High gain free electron laser devices, operating in the self amplified spontaneous emission regime, are under construction and was designed as the next generation of synchrotron radiation sources. In this paper we discuss the relevant physical aspects and derive simple relations for laser and higher order harmonic power, which can usefully be exploited in the preliminary design of these source

    Impact of electron beam quality on nonlinear harmonic generation in high-gain free-electron lasers

    Get PDF
    Nonlinear harmonic generation can be a very useful and important phenomenon for single-pass free-electron lasers (FELs) operating in the high-gain regime. Strong bunching at the fundamental wavelength and its associated higher harmonic content allow significant radiation at shorter wavelengths to be emitted without serious effects upon the output power at the fundamental. Here, we analyze the relative sensitivities to beam quality variations of the output fundamental and harmonic powers for a visible-wavelength FEL operating in the high-gain regime

    Intersociety policy statement on the use of whole-exome sequencing in the critically ill newborn infant

    Get PDF
    The rapid advancement of next-generation sequencing (NGS) technology and the decrease in costs for whole-exome sequencing (WES) and whole-genome sequening (WGS), has prompted its clinical application in several fields of medicine. Currently, there are no specific guidelines for the use of NGS in the field of neonatal medicine and in the diagnosis of genetic diseases in critically ill newborn infants. As a consequence, NGS may be underused with reduced diagnostic success rate, or overused, with increased costs for the healthcare system. Most genetic diseases may be already expressed during the neonatal age, but their identification may be complicated by nonspecific presentation, especially in the setting of critical clinical conditions. The differential diagnosis process in the neonatal intensive care unit (NICU) may be time-consuming, uncomfortable for the patient due to repeated sampling, and ineffective in reaching a molecular diagnosis during NICU stay. Serial gene sequencing (Sanger sequencing) may be successful only for conditions for which the clinical phenotype strongly suggests a diagnostic hypothesis and for genetically homogeneous diseases. Newborn screenings with Guthrie cards, which vary from country to country, are designed to only test for a few dozen genetic diseases out of the more than 6000 diseases for which a genetic characterization is available. The use of WES in selected cases in the NICU may overcome these issues. We present an intersociety document that aims to define the best indications for the use of WES in different clinical scenarios in the NICU. We propose that WES is used in the NICU for critically ill newborn infants when an early diagnosis is desirable to guide the clinical management during NICU stay, when a strong hypothesis cannot be formulated based on the clinical phenotype or the disease is genetically heterogeneous, and when specific non-genetic laboratory tests are not available. The use of WES may reduce the time for diagnosis in infants during NICU stay and may eventually result in cost-effectiveness

    Development and Implementation of the AIDA International Registry for Patients With Still's Disease

    Get PDF
    Objective: Aim of this paper is to present the design, construction, and modalities of dissemination of the AutoInflammatory Disease Alliance (AIDA) International Registry for patients with systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD), which are the pediatric and adult forms of the same autoinflammatory disorder. Methods: This Registry is a clinical, physician-driven, population- and electronic-based instrument implemented for the retrospective and prospective collection of real-world data. The collection of data is based on the Research Electronic Data Capture (REDCap) tool and is intended to obtain evidence drawn from routine patients' management. The collection of standardized data is thought to bring knowledge about real-life clinical research and potentially communicate with other existing and future Registries dedicated to Still's disease. Moreover, it has been conceived to be flexible enough to easily change according to future scientific acquisitions. Results: Starting from June 30th to February 7th, 2022, 110 Centers from 23 Countries in 4 continents have been involved. Fifty-four of these have already obtained the approval from their local Ethics Committees. Currently, the platform counts 290 users (111 Principal Investigators, 175 Site Investigators, 2 Lead Investigators, and 2 data managers). The Registry collects baseline and follow-up data using 4449 fields organized into 14 instruments, including patient's demographics, history, clinical manifestations and symptoms, trigger/risk factors, therapies and healthcare access. Conclusions: This international Registry for patients with Still's disease will allow a robust clinical research through collection of standardized data, international consultation, dissemination of knowledge, and implementation of observational studies based on wide cohorts of patients followed-up for very long periods. Solid evidence drawn from "real-life " data represents the ultimate goal of this Registry, which has been implemented to significantly improve the overall management of patients with Still's disease. NCT 05200715 available at

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative

    Get PDF
    Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative

    Get PDF

    Conceptual Design of a Soft X‐ray SASE‐FEL Source

    Get PDF
    FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R&D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR‐ENEA‐INFN‐University of Roma "Tor Vergata" study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, bringing to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S‐band normal conducting linac with high brightness photoinjector integrated in a RF compressor

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases.

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient's data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics
    corecore