79 research outputs found

    Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome

    Get PDF
    Background and aims: Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes.Methods: Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≄ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24).Results: VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≄ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman’s r = 0.874, p &lt; 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =– 0.256, p &lt; 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death.Conclusions: VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. Clinical trial number: NCT03267615.</p

    Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome

    Get PDF
    Background and aims: Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes.Methods: Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≄ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24).Results: VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≄ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman’s r = 0.874, p &lt; 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =– 0.256, p &lt; 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death.Conclusions: VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. Clinical trial number: NCT03267615.</p

    Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome

    Get PDF
    Background and aims: Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes.Methods: Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≄ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24).Results: VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≄ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman’s r = 0.874, p &lt; 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =– 0.256, p &lt; 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death.Conclusions: VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. Clinical trial number: NCT03267615.</p

    Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome

    Get PDF
    Background and aims: Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes.Methods: Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≄ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24).Results: VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≄ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman’s r = 0.874, p &lt; 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =– 0.256, p &lt; 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death.Conclusions: VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. Clinical trial number: NCT03267615.</p

    Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome

    Get PDF
    Background and aims: Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes.Methods: Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≄ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24).Results: VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≄ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman’s r = 0.874, p &lt; 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =– 0.256, p &lt; 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death.Conclusions: VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. Clinical trial number: NCT03267615.</p

    Factor VIII/protein C ratio independently predicts liver-related events but does not indicate a hypercoagulable state in ACLD

    Get PDF
    Background & Aims: It has been suggested that the ratio of procoagulant factor VIII to anticoagulant protein C (FVIII/PC) reflects the hemostatic equilibrium. Moreover, FVIII/PC predicted decompensation/death in a small study not accounting for portal hypertension severity. We investigated (i) the prognostic value of FVIII/PC (outcome-cohort) and (ii) whether FVIII/PC reflects the hypercoagulable state (assessed by thrombomodulin-modified thrombin generation assay [TM-TGA]) or the risk of bleeding/thrombotic events in patients undergoing hepatic venous pressure gradient (HVPG) measurement during follow-up. Methods: (i) The outcome-cohort comprised 576 patients with evidence of advanced chronic liver disease (liver stiffness measurement ≄10 kPa and/or HVPG ≄6 mmHg). (ii) TM-TGA-cohort patients (n = 142) were recruited from the prospective VIenna CIrrhosis Study (VICIS: NCT03267615). Results: (i) FVIII/PC significantly increased across clinical stages (p <0.001) as well as HVPG (p <0.001) and MELD score (p <0.001) strata and remained independently associated with decompensation/liver-related death (adjusted hazard ratio 1.06; 95% CI 1.01–1.11; p = 0.013), even after multivariable adjustment. It was also associated with acute-on-chronic liver failure (ACLF) development (adjusted hazard ratio 1.10; 95% CI 1.02-1.19; p = 0.015) in patients with decompensated cirrhosis. (ii) FVIII/PC showed a weak positive correlation with endogenous thrombin potential (Spearman's ρ = 0.255; p = 0.002), but this association disappeared after adjusting for the severity of liver disease. FVIII/PC was not associated with the development of bleeding (p = 0.272) or thrombotic events (p = 0.269). However, FVIII/PC correlated with biomarkers of different pathophysiological mechanisms that promote liver disease progression. Conclusion: FVIII/PC provides prognostic information regarding hepatic decompensation/death and ACLF, independently of established prognostic indicators. However, this is not evidence that hypercoagulability drives disease progression, as the correlation between FVIII/PC and thrombin generation is confounded by liver disease severity and FVIII/PC was not associated with thrombosis. Therefore, FVIII/PC does not reflect coagulation and results from previous studies on FVIII/PC require re-interpretation. Clinical trial number: NCT03267615 (in part). Lay summary: A balanced coagulation system is essential for preventing bleeding episodes and blood clot formation (thrombosis). Blood of patients with advanced liver disease may have increased coagulation potential, possibly promoting the worsening of liver disease via thrombosis in the blood vessels of the liver. The ratio between the results of 2 blood tests (procoagulant factor VIII to anticoagulant protein C) has been suggested to reflect these increases in coagulation potential. Our study demonstrates, on the one hand, that this ratio is a versatile predictor of the development of complications of cirrhosis, yet on the other hand, that it is unrelated to coagulation

    Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy

    Get PDF
    Nitration of proteins on tyrosine residues, which can occur due to polluted air under "summer smog" conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route.BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y(107)) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization.These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes

    Genetics of Dispersal

    Get PDF
    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.Peer reviewe

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
    • 

    corecore