26 research outputs found
The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)
Automated brain tumor segmentation methods have become well-established and
reached performance levels offering clear clinical utility. These methods
typically rely on four input magnetic resonance imaging (MRI) modalities:
T1-weighted images with and without contrast enhancement, T2-weighted images,
and FLAIR images. However, some sequences are often missing in clinical
practice due to time constraints or image artifacts, such as patient motion.
Consequently, the ability to substitute missing modalities and gain
segmentation performance is highly desirable and necessary for the broader
adoption of these algorithms in the clinical routine. In this work, we present
the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in
conjunction with the Medical Image Computing and Computer-Assisted Intervention
(MICCAI) 2023. The primary objective of this challenge is to evaluate image
synthesis methods that can realistically generate missing MRI modalities when
multiple available images are provided. The ultimate aim is to facilitate
automated brain tumor segmentation pipelines. The image dataset used in the
benchmark is diverse and multi-modal, created through collaboration with
various hospitals and research institutions.Comment: Technical report of BraSy
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Pediatric tumors of the central nervous system are the most common cause of
cancer-related death in children. The five-year survival rate for high-grade
gliomas in children is less than 20\%. Due to their rarity, the diagnosis of
these entities is often delayed, their treatment is mainly based on historic
treatment concepts, and clinical trials require multi-institutional
collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a
landmark community benchmark event with a successful history of 12 years of
resource creation for the segmentation and analysis of adult glioma. Here we
present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which
represents the first BraTS challenge focused on pediatric brain tumors with
data acquired across multiple international consortia dedicated to pediatric
neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on
benchmarking the development of volumentric segmentation algorithms for
pediatric brain glioma through standardized quantitative performance evaluation
metrics utilized across the BraTS 2023 cluster of challenges. Models gaining
knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training
data will be evaluated on separate validation and unseen test mpMRI dataof
high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023
challenge brings together clinicians and AI/imaging scientists to lead to
faster development of automated segmentation techniques that could benefit
clinical trials, and ultimately the care of children with brain tumors
Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study
Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study
Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p<00001), age 70 years or older versus younger than 70 years (230 [165-322], p<00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p<00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Simulation and prediction for energy dissipaters and stilling basins design using artificial intelligence technique
Water with large velocities can cause considerable damage to channels whose beds are composed of natural earth materials. Several stilling basins and energy dissipating devices have been designed in conjunction with spillways and outlet works to avoid damages in canals’ structures. In addition, lots of experimental and traditional mathematical numerical works have been performed to profoundly investigate the accurate design of these stilling basins and energy dissipaters. The current study is aimed toward introducing the artificial intelligence technique as new modeling tool in the prediction of the accurate design of stilling basins. Specifically, artificial neural networks (ANNs) are utilized in the current study in conjunction with experimental data to predict the length of the hydraulic jumps occurred in spillways and consequently the stilling basin dimensions can be designed for adequate energy dissipation. The current study showed, in a detailed fashion, the development process of different ANN models to accurately predict the hydraulic jump lengths acquired from different experimental studies. The results obtained from implementing these models showed that ANN technique was very successful in simulating the hydraulic jump characteristics occurred in stilling basins. Therefore, it can be safely utilized in the design of these basins as ANN involves minimum computational and financial efforts and requirements compared with experimental work and traditional numerical techniques such as finite difference or finite elements
Current Concepts in Multi-Modality Imaging of Solid Tumor Angiogenesis
There have been rapid advancements in cancer treatment in recent years, including targeted molecular therapy and the emergence of anti-angiogenic agents, which necessitate the need to quickly and accurately assess treatment response. The ideal tool is robust and non-invasive so that the treatment can be rapidly adjusted or discontinued based on efficacy. Since targeted therapies primarily affect tumor angiogenesis, morphological assessment based on tumor size alone may be insufficient, and other imaging modalities and features may be more helpful in assessing response. This review aims to discuss the biological principles of tumor angiogenesis and the multi-modality imaging evaluation of anti-angiogenic therapeutic responses
Multimodality annotated hepatocellular carcinoma data set including pre-Â and post-TACE with imaging segmentation
Measurement(s) Image Segmentation • hepatocellular carcinoma Technology Type(s) Neural Network • Multiphasic Computed Tomography of the Abdomen Sample Characteristic - Organism multiphasic CT of the abdomen Sample Characteristic - Location contiguous United States of Americ
Recommended from our members
AI-Based Automated Lipomatous Tumor Segmentation in MR Images: Ensemble Solution to Heterogeneous Data.
Deep learning (DL) has been proposed to automate image segmentation and provide accuracy, consistency, and efficiency. Accurate segmentation of lipomatous tumors (LTs) is critical for correct tumor radiomics analysis and localization. The major challenge of this task is data heterogeneity, including tumor morphological characteristics and multicenter scanning protocols. To mitigate the issue, we aimed to develop a DL-based Super Learner (SL) ensemble framework with different data correction and normalization methods. Pathologically proven LTs on pre-operative T1-weighted/proton-density MR images of 185 patients were manually segmented. The LTs were categorized by tumor locations as distal upper limb (DUL), distal lower limb (DLL), proximal upper limb (PUL), proximal lower limb (PLL), or Trunk (T) and grouped by 80%/9%/11% for training, validation and testing. Six configurations of correction/normalization were applied to data for fivefold-cross-validation trainings, resulting in 30 base learners (BLs). A SL was obtained from the BLs by optimizing SL weights. The performance was evaluated by dice-similarity-coefficient (DSC), sensitivity, specificity, and Hausdorff distance (HD95). For predictions of the BLs, the average DSC, sensitivity, and specificity from the testing data were 0.72 [Formula: see text] 0.16, 0.73 [Formula: see text] 0.168, and 0.99 [Formula: see text] 0.012, respectively, while for SL predictions were 0.80 [Formula: see text] 0.184, 0.78 [Formula: see text] 0.193, and 1.00 [Formula: see text] 0.010. The average HD95 of the BLs were 11.5 (DUL), 23.2 (DLL), 25.9 (PUL), 32.1 (PLL), and 47.9 (T) mm, whereas of SL were 1.7, 8.4, 15.9, 2.2, and 36.6 mm, respectively. The proposed method could improve the segmentation accuracy and mitigate the performance instability and data heterogeneity aiding the differential diagnosis of LTs in real clinical situations