86 research outputs found

    Kinetics and Mechanism of Oxidation of Co (II) Ternary Complexes Involving N-(2-Acetamido) Iminodiacete and Some Amino Acids Acid by Periodate

    Get PDF
    The kinetics of oxidation of the cobalt (II) complexes, [CoII(ADA)(Gly)(H2O)2]-, (ADA = N-(2-acetamido) iminodi-acetic acid and (Gly = Glycine) by periodate in aqueous acetate medium to cobalt (III) have been studied spectrophotometrically at 530 nm over the 30–50°C and a variety pH 4.57-5.25 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Gly)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}. Also, the kinetics of oxidation of the cobalt(II) complexes, [CoII(ADA)(Val)(H2O)2]- (ADA = N-(2-acetamido) iminodi-acetic acid and (Val = valine) by periodate in aqueous medium to cobalt (III) have been studied spectrophotometrically at 580 nm over the 30–50°C and a variety pH 4.3-5.12 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Val)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])

    Kinetics and Mechanism of Oxidation of Co (II) Ternary Complexes Involving N-(2-Acetamido) Iminodiacete and Some Amino Acids Acid by Periodate

    Get PDF
    The kinetics of oxidation of the cobalt (II) complexes, [CoII(ADA)(Gly)(H2O)2]-, (ADA = N-(2-acetamido) iminodi-acetic acid and (Gly = Glycine) by periodate in aqueous acetate medium to cobalt (III) have been studied spectrophotometrically at 530 nm over the 30–50°C and a variety pH 4.57-5.25 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Gly)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}. Also, the kinetics of oxidation of the cobalt(II) complexes, [CoII(ADA)(Val)(H2O)2]- (ADA = N-(2-acetamido) iminodi-acetic acid and (Val = valine) by periodate in aqueous medium to cobalt (III) have been studied spectrophotometrically at 580 nm over the 30–50°C and a variety pH 4.3-5.12 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Val)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])

    Multi-parametric arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of grade II and grade III gliomas

    Get PDF
    Purpose: To assess arterial spin labelling (ASL) perfusion and diffusion MR imaging (DWI) in the differentiation of grade II from grade III gliomas. Material and methods: A prospective cohort study was done on 36 patients (20 male and 16 female) with diffuse gliomas, who underwent ASL and DWI. Diffuse gliomas were classified into grade II and grade III. Calculation of tumoural blood flow (TBF) and apparent diffusion coefficient (ADC) of the tumoral and peritumoural regions was made. The ROC curve was drawn to differentiate grade II from grade III gliomas. Results: There was a significant difference in TBF of tumoural and peritumoural regions of grade II and III gliomas (p = 0.02 and p =0.001, respectively). Selection of 26.1 and 14.8 ml/100 g/min as the cut-off for TBF of tumoural and peritumoural regions differentiated between both groups with area under curve (AUC) of 0.69 and 0.957, and accuracy of 77.8% and 88.9%, respectively. There was small but significant difference in the ADC of tumoural and peritumoural regions between grade II and III gliomas (p = 0.02 for both). The selection of 1.06 and 1.36 × 10-3 mm2/s as the cut-off of ADC of tumoural and peritumoural regions was made, to differentiate grade II from III with AUC of 0.701 and 0.748, and accuracy of 80.6% and 80.6%, respectively. Combined TBF and ADC of tumoural regions revealed an AUC of 0.808 and accuracy of 72.7%. Combined TBF and ADC for peritumoural regions revealed an AUC of 0.96 and accuracy of 94.4%. Conclusion: TBF and ADC of tumoural and peritumoural regions are accurate non-invasive methods of differentiation of grade II from grade III gliomas

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper, the kinetics of oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>(HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [Cr<sup>III</sup>(HIDA)(IDA)(H<sub>2</sub>O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study.</p> <p>Results</p> <p>The results have shown that the reaction is first order with respect to both [IO<sub>4</sub><sup>-</sup>] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [Cr<sup>III</sup>(IDA)(Val)(H<sub>2</sub>O)<sub>2</sub>] and [Cr<sup>III</sup>(IDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3 </sub>(1.82 × 10<sup>-3 </sup>s<sup>-1</sup>), is greater than the value of <it>k</it><sub>1 </sub>(1.22 × 10<sup>-3 </sup>s<sup>-1</sup>) for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>at 45.0°C and <it>I </it>= 0.20 mol dm<sup>-3</sup>. It is proposed that electron transfer proceeds through an inner-sphere mechanism <it>via </it>coordination of IO<sub>4</sub><sup>- </sup>to chromium(III).</p> <p>Conclusion</p> <p>The oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3</sub>, is greater than the value of <it>k</it><sub>1 </sub>for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.</p

    Universal Patterns in Color-Emotion Associations Are Further Shaped by Linguistic and Geographic Proximity

    Get PDF
    Many of us "see red," "feel blue," or "turn green with envy." Are such color-emotion associations fundamental to our shared cognitive architecture, or are they cultural creations learned through our languages and traditions? To answer these questions, we tested emotional associations of colors in 4,598 participants from 30 nations speaking 22 native languages. Participants associated 20 emotion concepts with 12 color terms. Pattern-similarity analyses revealed universal color-emotion associations (average similarity coefficientr= .88). However, local differences were also apparent. A machine-learning algorithm revealed that nation predicted color-emotion associations above and beyond those observed universally. Similarity was greater when nations were linguistically or geographically close. This study highlights robust universal color-emotion associations, further modulated by linguistic and geographic factors. These results pose further theoretical and empirical questions about the affective properties of color and may inform practice in applied domains, such as well-being and design.Peer reviewe

    The sun is no fun without rain : Physical environments affect how we feel about yellow across 55 countries

    Get PDF
    Across cultures, people associate colours with emotions. Here, we test the hypothesis that one driver of this cross-modal correspondence is the physical environment we live in. We focus on a prime example – the association of yellow with joy, – which conceivably arises because yellow is reminiscent of life-sustaining sunshine and pleasant weather. If so, this association should be especially strong in countries where sunny weather is a rare occurrence. We analysed yellow-joy associations of 6625 participants from 55 countries to investigate how yellow-joy associations varied geographically, climatologically, and seasonally. We assessed the distance to the equator, sunshine, precipitation, and daytime hours. Consistent with our hypotheses, participants who live further away from the equator and in rainier countries are more likely to associate yellow with joy. We did not find associations with seasonal variations. Our findings support a role for the physical environment in shaping the affective meaning of colour.Peer reviewe

    Personality profiles of cultures: aggregate personality traits

    Get PDF
    Personality profiles of cultures can be operationalized as the mean trait levels of culture members. College students from 51 cultures rated an individual from their country whom they knew well (N = 12, 156). Aggregate scores on Revised NEO Personality Inventory scales generalized across age and gender groups, approximated the individual-level Five-Factor Model, and correlated with aggregate self-report personality scores and other culture-level variables. Results were not attributable to national differences in economic development or to acquiescence. Geographical differences in scale variances and mean levels were replicated, with Europeans and Americans generally scoring higher in Extraversion than Asians and Africans. Findings support the rough scalar equivalence of NEO-PI-R factors and facets across cultures, and suggest that aggregate personality profiles provide insight into cultural differences

    Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives

    Get PDF
    In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment

    Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    Get PDF
    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment for the biochemical conversion of Cotton Gin Trash (CGT) in ethanol and as a treatment for the transformation of cotton wastes biochar in other substances. In biochemical conversion, seven combinations of three pretreatments (ultrasonication, liquid hot water and ligninolytic enzymes) were evaluated on CGT. The best results were achieved by the sequential combination of ultrasonication, hot water, and ligninolytic enzymes with an improvement of 10% in ethanol yield. To improve these results, alkaline-ultrasonication was evaluated. Additionally, Fourier Transform Infrared (FT-IR) and principal component analysis (PCA) were employed as fast methodology to identify structural differences in the biomass. The combination of ultrasonication-alkali hydrolysis, hot liquid water, and ligninolytic enzymes using 15% of NaOH improved 35% ethanol yield compared with the original treatment. Additionally, FT-IR and PCA identified modifications in the biomass structure after different types of pretreatments and conditions. In thermal conversion, this study evaluated the biodepolymerization of cotton wastes biochar using chemical and biological treatments. The chemical depolymerization evaluated three chemical agents (KMnO4, H2SO4, and NaOH), with three concentrations and two environmental conditions. The sulfuric acid treatments performed the largest transformations of the biochar solid phase; whereas, the KMnO4 treatments achieved the largest depolymerizations. The compounds released into the liquid phase were correlated with fulvic and humic acids and silicon compounds. The biological depolymerization utilized four ligninolytic fungi Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Postia placenta, and Bjerkandera adusta. The greatest depolymerization was obtained by C. subvermispora. The depolymerization kinetics of C. subvermispora evidenced the production of laccase and manganese peroxidase and a correlation between depolymerization and production of ligninolytic enzymes. The modifications obtained in the liquid and solid phases showed the production of humic and fulvic acids from the cultures with C. subvermispora. The results of this research are the initial steps for the development of new processes using the ligninolytic fungus and their enzymes for the production of biofuels from cotton wastes
    corecore