33 research outputs found

    Regenerative Gas Turbine Power Plant: Performance & Evaluation

    Get PDF
    In this work, comprehensive operational and conceptual design basics of the Regenerative Gas Turbine were studied and applied to the Khartoum North Thermal Power Station, Sudan, which has a total power of 187MW. The analysis and results of this work were executed using the Engineering Equation Solver.The results show that, the increasing the effectiveness of the regenerative cycle increased the thermal efficiency. However, there is a turning point of compressor inlet temperature, after which the further increase of temperature and regenerator effectiveness will lead to decline in the thermal efficiency of the cycle. At lower regeneration and moderate regenerator effectiveness, the increase in compression ratio leads to an increase in thermal efficiency of the cycle. At the highest values of regeneration effectiveness, the increase in compression ratios reduced the thermal efficiency of the cycle. The results revealed that regeneration is more effective at lower pressure ratios, ambient temperatures, and low minimum (compressor) to maximum (combustor) temperature ratios. An increase in regeneration effectiveness decreases the specific fuel consumption for lower and moderate compression ratios. At higher compression ratios, increasing regenerator effectiveness leads to an increase in the specific fuel consumption (SFC) of the cycle. At low and moderate compressor inlet temperature, increasing the regenerator effectiveness decreases fuel demand in the combustor, which reflects in decreasing the heat rate to the combustor especially at higher regenerative effectiveness (e=95%). As the effectiveness varies between 10-75%, the compressor inlet temperature varies from 200K to 350K and the regenerator exhaust temperature exhibited different profiles according to the conditions of inlet temperature. It was found that power curve declines smoothly due to the increase in irreversibility of regeneration cycle and remains high at higher turbine inlet temperatures. Compressor inlet temperatures between 100-330K increase the regeneration effectiveness varying between 10-95%, resulting a in different profile of the combustor inlet temperature. The mass flow rate of the fuel in the combustor decreases with increasing regeneration effectiveness at lower compressor inlet temperatures. At higher inlet temperatures, the fuel flow rate will gradually increase with the regeneration effectiveness due increasing irreversibilities of the regenerator. For a compression ratio of 15, the fuel mass flow rate reaches the lowest value of (6.30 kg/sec) at the lowest ambient temperature of 200 K and a regenerative effectiveness of 95%. The increase of the lower heating value (LHV) leads to a gradual increase in the thermal efficiency of the regenerative gas turbine (RGT), due to increasing cycle power and combustor capacity. The results concluded that the regeneration effectiveness is higher at low and moderate compressor inlet temperatures and compression ratios, through which, avoiding the regenerator’s irreversibility is possible

    Direct Extraction and Assessment of Genomic DNA of Mycetoma Fungi from Black-grains Specimen

    Get PDF
    Background: Direct isolation of genomic DNA of mycetoma fungi from black-grains achieve rapid diagnosis and may overcome culture disadvantages. Objectives: This study aimed to isolate and assess the DNA of mycetoma fungi using black-grains and to apply amplification of ITS region and nucleotide sequences. Methods: CTAB method was followed by manual homogenization alternatively to liquid nitrogen and glass beads disruption to obtain the genomic DNA. Results: Yielded DNA concentrations vary from 1.50 to 47.97 μg/ml (mean 10.09 μg/ml) while the optimum DNA purity recorded with 75.8% of specimens (n=69/91).Successful amplification of ITS region was done using pan-fungal primers (ITS4/5) with 90.1 (n=82/91)percentage. Species nucleotide sequences were detected with 67 (94.4%) amplicons from a total of 71.Conclusion: The study recommended using of black-grain specimens for DNA extraction of mycetoma fungi parallel with culture to insure rabid diagnosis and identification

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set

    Get PDF
    Background: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients.Methods: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method.Results: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO.Conclusions: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study

    Get PDF
    Purpose: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%–50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore