257 research outputs found
Efficient multi-robot motion planning for unlabeled discs in simple polygons
We consider the following motion-planning problem: we are given unit discs in a simple polygon with vertices, each at their own start position, and we want to move the discs to a given set of target positions. Contrary to the standard (labeled) version of the problem, each disc is allowed to be moved to any target position, as long as in the end every target position is occupied. We show that this unlabeled version of the problem can be solved in time, assuming that the start and target positions are at least some minimal distance from each other. This is in sharp contrast to the standard (labeled) and more general multi-robot motion planning problem for discs moving in a simple polygon, which is known to be strongly NP-hard
Clarifying Some Remaining Questions in the Anomaly Puzzle
We discuss several points that may help to clarify some questions that remain
about the anomaly puzzle in supersymmetric theories. In particular, we consider
a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the
question of whether there is a consistent way to put the R-current and the
stress tensor in a single supercurrent, even though in the classical theory
they are in the same supermultiplet. As is well known, the classically
conserved supercurrent bifurcates into two supercurrents having different
anomalies in the quantum regime. The most interesting result we obtain is an
explicit expression for the lowest component of one of the two supercurrents in
4-dimensional spacetime, namely the supercurrent that has the energy-momentum
tensor as one of its components. This expression for the lowest component is an
energy-dependent linear combination of two chiral currents, which itself does
not correspond to a classically conserved chiral current. The lowest component
of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen
theorem. The lowest component of the first supercurrent has an anomaly that we
show is consistent with the anomaly of the trace of the energy-momentum tensor.
Therefore, we conclude that there is no consistent way to put the R-current and
the stress tensor in a single supercurrent in the quantized theory. We also
discuss and try to clarify some technical points in the derivations of the
two-supercurrents in the literature. These latter points concern the
significance of infrared contributions to the NSVZ beta-function and the role
of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized.
new subsections (IVA, IVB) added. references adde
Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities
Lichens and spore-derived cultured mycobionts of Teloschistes chrysophthalmus and Ramalina celastri were studied chemically, and results indicated that they produced, respectively, parietin and usnic acid as major secondary metabolites, which were purified and identified. Identification of the compounds was performed by high performance liquid chromatography and structural elucidation by nuclear magnetic resonance ( 1 H) and electron impact mass spectrometry. Usnic acid exhibited antiviral activity whereas parietin had a virucidal effect against the arenaviruses Junín and Tacaribe. © 2007 Verlag der Zeitschrift für Naturforschung.Fil:Fazio, A.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Adler, M.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bertoni, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sepúlveda, C.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Damonte, E.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Maier, M.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Softly broken supersymmetric Yang-Mills theories: Renormalization and non-renormalization theorems
We present a minimal version for the renormalization of softly broken
Super-Yang-Mills theories using the extended model with a local gauge coupling.
It is shown that the non-renormalization theorems of the case with unbroken
supersymmetry are valid without modifications and that the renormalization of
soft-breaking parameters is completely governed by the renormalization of the
supersymmetric parameters. The symmetry identities in the present context are
peculiar, since the extended model contains two anomalies: the Adler-Bardeen
anomaly of the axial current and an anomaly of supersymmetry in the presence of
the local gauge coupling. From the anomalous symmetries we derive the exact
all-order expressions for the beta functions of the gauge coupling and of the
soft-breaking parameters. They generalize earlier results to arbitrary
normalization conditions and imply the NSVZ expressions for a specific
normalization condition on the coupling.Comment: 24 pages, LaTeX, v2: one reference adde
Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function
We present a both ultraviolet and infrared regularization independent
analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta
function to two loop order. We show explicitly that off-shell infrared
divergences as well as the overall two loop ultraviolet divergence cancel out
whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte
Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold
We study the multifractal properties of the current distribution of the
three-dimensional random resistor network at the percolation threshold. For
lattices ranging in size from to we measure the second, fourth and
sixth moments of the current distribution, finding {\it e.g.\/} that
where is the conductivity exponent and is the
correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
k=0Magnetic Structure and Absence of Ferroelectricity in SmFeO3
SmFeO3 has attracted considerable attention very recently due to the reported
multiferroic properties above room-temperature. We have performed powder and
single crystal neutron diffraction as well as complementary polarization
dependent soft X-ray absorption spectroscopy measurements on floating-zone
grown SmFeO3 single crystals in order to determine its magnetic structure. We
found a k=0 G-type collinear antiferromagnetic structure that is not compatible
with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While
the structural data reveals a clear sign for magneto-elastic coupling at the
N\'eel-temperature of ~675 K, the dielectric measurements remain silent as far
as ferroelectricity is concerned
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
- …