51 research outputs found

    On the nonlinear NMR and magnon BEC in antiferromagnetic materials with coupled electron-nuclear spin precession

    Get PDF
    We present a new study of nonlinear NMR and Bose-Einstein Condensation (BEC) of nuclear spin waves in antiferromagnetic MnCO3 with coupled electron and nuclear spins. In particular, we show that the observed behaviour of NMR signals strongly contradicts the conventional description of paramagnetic ensembles of noninteracting spins based on the phenomenological Bloch equations. We present a new theoretical description of the coupled electron-nuclear spin precession, which takes into account an indirect relaxation of nuclear spins via the electron subsystem. We show that the magnitude of the nuclear magnetization is conserved for arbitrary large excitation powers, which is drastically different from the conventional heating scenario derived from the Bloch equations. This provides strong evidence that the coherent precession of macroscopic nuclear magnetization observed experimentally can be identified with BEC of nuclear spin waves with k=0.Comment: 12 pages, 8 figure

    Magnon-photon coupling in the noncollinear magnetic insulator Cu 2 OSeO 3

    Get PDF
    Anticrossing behavior between magnons in the noncollinear chiral magnet Cu2OSeO3 and a two-mode X-band microwave resonator was studied in the temperature range 5–100 K. In the field-induced ferrimagnetic phase, we observed a strong-coupling regime between magnons and two microwave cavity modes with a cooperativity reaching 3600. In the conical phase, cavity modes are dispersively coupled to a fundamental helimagnon mode, and we demonstrate that the magnetic phase diagram of Cu2OSeO3 can be reconstructed from the measurements of the cavity resonance frequency. In the helical phase, a hybridized state of a higher-order helimagnon mode and a cavity mode—a helimagnon polariton—was found. Our results reveal a class of magnetic systems where strong coupling of microwave photons to nontrivial spin textures can be observed

    One-dimensional Bose chemistry: effects of non-integrability

    Full text link
    Three-body collisions of ultracold identical Bose atoms under tight cylindrical confinement are analyzed. A Feshbach resonance in two-body collisions is described by a two-channel zero-range interaction. Elimination of the closed channel in the three-body problem reduces the interaction to a one-channel zero-range one with an energy dependent strength. The related problem with an energy independent strength (the Lieb-Liniger-McGuire model) has an exact solution and forbids all chemical processes, such as three-atom association and diatom dissociation, as well as reflection in atom-diatom collisions. The resonant case is analyzed by a numerical solution of the Faddeev-Lovelace equations. The results demonstrate that as the internal symmetry of the Lieb-Liniger-McGuire model is lifted, the reflection and chemical reactions become allowed and may be observed in experiments.Comment: 5 pages, 4 figure

    Spin resonance linewidths of bismuth donors in silicon coupled to planar microresonators

    Full text link
    Ensembles of bismuth donor spins in silicon are promising storage elements for microwave quantum memories due to their long coherence times which exceed seconds. Operating an efficient quantum memory requires achieving critical coupling between the spin ensemble and a suitable high-quality factor resonator -- this in turn requires a thorough understanding of the lineshapes for the relevant spin resonance transitions, particularly considering the influence of the resonator itself on line broadening. Here, we present pulsed electron spin resonance measurements of ensembles of bismuth donors in natural silicon, above which niobium superconducting resonators have been patterned. By studying spin transitions across a range of frequencies and fields we identify distinct line broadening mechanisms, and in particular those which can be suppressed by operating at magnetic-field-insensitive `clock transitions'. Given the donor concentrations and resonator used here, we measure a cooperativity C0.2C\sim 0.2 and based on our findings we discuss a route to achieve unit cooperativity, as required for a quantum memory

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore