560 research outputs found

    Period and chemical evolution of SC stars

    Full text link
    The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to unity. Within this small group, the Mira variable BH Cru recently evolved from spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis shows that the spectral evolution was accompanied by a dramatic period increase, from 420 to 540 days, indicating an expanding radius. The pulsation amplitude also increased. Old photographic plates are used to establish that the period before 1940 was around 490 days. Chemical models indicate that the spectral changes were caused by a decrease in stellar temperature, related to the increasing radius. There is no evidence for a change in C/O ratio. The evolution in BH Cru is unlikely to be related to an on-going thermal pulse. Periods of the other SC and CS stars, including nine new periods, are determined. A second SC star, LX Cyg, also shows evidence for a large increase in period, and one further star shows a period inconsistent with a previous determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly because of a feedback between the molecular opacities, pulsation amplitude, and period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron, which resembles one recently attributed to the iron-sulfide troilite. Chemical models predict a large abundance of FeS in SC stars, in agreement with the proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated to her memor

    Galaxy and mass assembly (GAMA): A deeper view of the mass, metallicity and SFR relationships

    Get PDF
    A full appreciation of the role played by gasmetallicity (Z), star formation rate (SFR) and stellar mass (M*) is fundamental to understanding how galaxies form and evolve. The connections between these three parameters at different redshifts significantl

    Galaxy And Mass Assembly (GAMA): stellar mass estimates

    Get PDF
    This paper describes the first catalogue of photometrically derived stellar mass estimates for intermediate-redshift (z < 0.65; median z= 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include near-infrared (NIR) photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; these issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M*/Li. Further, we use the observed relation between restframe (g−i) and M*/Li for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g−i) colour can in practice be used to estimate M*/Li to an accuracy of ≲0.1 dex (1σ). This ‘empirically calibrated' (g−i)-M*/Li relation offers a simple and transparent means for estimating galaxies' stellar masses based on minimal data, and so provides a solid basis for other surveys to compare their results to z≲0.4 measurements from GAM

    Galaxy And Mass Assembly (GAMA): Linking star formation histories and stellar mass growth

    Get PDF
    WWe present evidence for stochastic star formation histories in low-mass (M* <1010M⊙) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ̃73 000 galaxies between 0.05 < z < 0.32, we calculate star formation rate

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Polo-Like Kinase Controls Vertebrate Spindle Elongation and Cytokinesis

    Get PDF
    During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly

    Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes

    Get PDF
    Mpumalanga Province, South Africa is a low malaria transmission area that is subject to malaria epidemics. SaTScan methodology was used by the malaria control programme to detect local malaria clusters to assist disease control planning. The third season for case cluster identification overlapped with the first season of implementing an outbreak identification and response system in the area. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using definitively confirmed individual cases in seven towns over three malaria seasons. Following passive case reporting at health facilities during the 2002 to 2005 seasons, active case detection was carried out in the communities, this assisted with determining the probable source of infection. The distribution and statistical significance of the clusters were explored by means of Monte Carlo replication of data sets under the null hypothesis with replications greater than 999 to ensure adequate power for defining clusters. SaTScan detected five space-clusters and two space-time clusters during the study period. There was strong concordance between recognized local clustering of cases and outbreak declaration in specific towns. Both Albertsnek and Thambokulu reported malaria outbreaks in the same season as space-time clusters. This synergy may allow mutual validation of the two systems in confirming outbreaks demanding additional resources and cluster identification at local level to better target resources. Exploring the clustering of cases assisted with the planning of public health activities, including mobilizing health workers and resources. Where appropriate additional indoor residual spraying, focal larviciding and health promotion activities, were all also carried out

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore