122 research outputs found

    High expression of Lewis(y/b )antigens is associated with decreased survival in lymph node negative breast carcinomas

    Get PDF
    INTRODUCTION: There is sufficient evidence that blood group related Lewis antigens are tumour-associated molecules. The Lewis(y )and Lewis(b )antigens are complex carbohydrates that are over-expressed by breast, lung, colon and ovarian cancers. The SC101 mAb is a unique Lewis(y/b )binding antibody that binds to native and extended Lewis(y )and Lewis(b )haptens, displaying no cross reactivity with H type 1, H type 2, Lewis(x )or normal blood group antigens. METHODS: Immunohistochemical detection of Lewis(y/b )was performed on 660 formalin-fixed, paraffin embedded breast tumour specimens using a streptavidin-biotin peroxidase technique. Tissue from these patients had previously been included in tissue microarrays. This cohort comprises a well characterized series of patients with primary operable breast cancer diagnosed between 1987 and 1992, obtained from the Nottingham Tenovus Primary Breast Carcinoma Series. This includes patients 70 years of age or less, with a mean follow up of 7 years. RESULTS: Of the breast carcinomas, 370 of 660 (56%) were negative for Lewis(y/b )expression, 110 (17%) cases showed a low level of expression (<25% of positive cells) and only 54 cases (8%) showed extensive expression of Lewis(y/b )(>75% of positive cells). We found significant positive associations between histological grade (p < 0.001), Nottingham Prognostic Index (p = 0.016), tumour type (p = 0.007) and the level of Lewis (y/b )expression. There was a significant correlation between the proportion of Lewis(y/b )positive tumour cells and survival in lymph-node negative patients (p = 0.006). CONCLUSION: The unique epitope recognised by SC101 mAb on Lewis(y/b )hapten is over-expressed on breast tumour tissue compared with normal breast. In this large series of invasive breast cancers, higher expression of Lewis(y/b )was more often found in high grade and poor prognosis tumours compared to good prognosis cancers. Moreover, in lymph node negative breast carcinomas, over-expression of Lewis(y/b )hapten was associated with significantly decreased patient survival

    Epidemiology of Concomitant Infection Due to Loa loa and Mansonella perstans in Gabon

    Get PDF
    Loa loa and Mansonella perstans are blood filarial parasites, endemic in the central and western African forest block, and transmitted by chrysops and culicoides flies, respectively. Loa loa is pathogenic and represents a major obstacle to the control of co-endemic filariae. Treatment of individuals with >8000 Loa loa microfilariae/ml can result in severe adverse reactions. M. perstans is prevalent in the tropics, with undefined clinical symptoms. We screened 4392 individuals for these infections in 212 Gabonese villages. The overall prevalence rates were 22.4% for Loa loa microfilariae, 10.2% for M. perstans, and 3.2% for mixed infection. These rates varied across the different ecosystems: forest, savannah, Lakeland, river (Ogouée), and equator. A correlation was found between the prevalence and intensity of microfilariae, while a negative relationship was found between clinical symptoms (pruritis, Calabar swelling) and the prevalence of Loa loa microfilaremia. This study confirms the spatial uniformity of the relationship between parasitological indices, and provides a map and baseline data for implementation of mass chemotherapy for these infections

    Prognostic factors for patients with hepatic metastases from breast cancer

    Get PDF
    Median survival from liver metastases secondary to breast cancer is only a few months, with very rare 5-year survival. This study reviewed 145 patients with liver metastases from breast cancer to determine factors that may influence survival. Data were analysed using Kaplan–Meier survival curves, univariate and multivariate analysis. Median survival was 4.23 months (range 0.16–51), with a 27.6% 1-year survival. Factors that significantly predicted a poor prognosis on univariate analysis included symptomatic liver disease, deranged liver function tests, the presence of ascites, histological grade 3 disease at primary presentation, advanced age, oestrogen receptor (ER) negative tumours, carcinoembryonic antigen of over 1000 ng ml−1 and multiple vs single liver metastases. Response to treatment was also a significant predictor of survival with patients responding to chemo- or endocrine therapy surviving for a median of 13 and 13.9 months, respectively. Multivariate analysis of pretreatment variables identified a low albumin, advanced age and ER negativity as independent predictors of poor survival. The time interval between primary and metastatic disease, metastases at extrahepatic sites, histological subtype and nodal stage at primary presentation did not predict prognosis. Awareness of the prognostic implications of the above factors may assist in selecting the most appropriate treatment for these patients

    Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States

    Get PDF
    Global simulations of sulfate, nitrate, and ammonium aerosols are performed for the present day and 2050 using the chemical transport model GEOS-Chem. Changes in climate and emissions projected by the IPCC A1B scenario are imposed separately and together, with the primary focus of the work on future inorganic aerosol levels over the United States. Climate change alone is predicted to lead to decreases in levels of sulfate and ammonium in the southeast U.S. but increases in the Midwest and northeast U.S. Nitrate concentrations are projected to decrease across the U.S. as a result of climate change alone. In the U.S., climate change alone can cause changes in annually averaged sulfate-nitrate-ammonium of up to 0.61 μg/m^3, with seasonal changes often being much larger in magnitude. When changes in anthropogenic emissions are considered (with or without changes in climate), domestic sulfate concentrations are projected to decrease because of sulfur dioxide emission reductions, and nitrate concentrations are predicted to generally increase because of higher ammonia emissions combined with decreases in sulfate despite reductions in emissions of nitrogen oxides. The ammonium burden is projected to increase from 0.24 to 0.36 Tg, and the sulfate burden to increase from 0.28 to 0.40 Tg S as a result of globally higher ammonia and sulfate emissions in the future. The global nitrate burden is predicted to remain essentially constant at 0.35 Tg, with changes in both emissions and climate as a result of the competing effects of higher precursor emissions and increased temperature

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind
    corecore