86 research outputs found

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Functional conservation in the SIAMESE-RELATED family of cyclin-dependent kinase inhibitors in land plants

    Get PDF
    © 2015 American Society of Plant Biologists. All rights reserved. The best-characterized members of the plant-specific SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors regulate the transition from the mitotic cell cycle to endoreplication, also known as endoreduplication, an altered version of the cell cycle in which DNA is replicated without cell division. Some other family members are implicated in cell cycle responses to biotic and abiotic stresses. However, the functions of most SMRs remain unknown, and the specific cyclin- dependent kinase complexes inhibited by SMRs are unclear. Here, we demonstrate that a diverse group of SMRs, including an SMR from the bryophyte Physcomitrella patens, can complement an Arabidopsis thaliana siamese (sim) mutant and that both Arabidopsis SIM and P. patens SMR can inhibit CDK activity in vitro. Furthermore, we show that Arabidopsis SIM can bind to and inhibit both CDKA;1 and CDKB1;1. Finally, we show that SMR2 acts to restrict cell proliferation during leaf growth in Arabidopsis and that SIM, SMR1/LGO, and SMR2 play overlapping roles in controlling the transition from cell division to endoreplication during leaf development. These results indicate that differences in SMR function in plant growth and development are primarily due to differences in transcriptional and posttranscriptional regulation, rather than to differences in fundamental biochemical function

    Improved annotation of the insect vector of citrus greening disease: Biocuration by a diverse genomics community

    Get PDF
    The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector using chemical insecticides has been the primary method to inhibit the spread of citrus greening disease. Accurate structural and functional annotation of the Asian citrus psyllid genome, as well as a clear understanding of the interactions between the insect and CLas, are required for development of new molecular-based HLB control methods. A draft assembly of the D. citri genome has been generated and annotated with automated pipelines. However, knowledge transfer from well-curated reference genomes such as that of Drosophila melanogaster to newly sequenced ones is challenging due to the complexity and diversity of insect genomes. To identify and improve gene models as potential targets for pest control, we manually curated several gene families with a focus on genes that have key functional roles in D. citri biology and CLas interactions. This community effort produced 530 manually curated gene models across developmental, physiological, RNAi regulatory and immunity-related pathways. As previously shown in the pea aphid, RNAi machinery genes putatively involved in the microRNA pathway have been specifically duplicated. A comprehensive transcriptome enabled us to identify a number of gene families that are either missing or misassembled in the draft genome. In order to develop biocuration as a training experience, we included undergraduate and graduate students from multiple institutions, as well as experienced annotators from the insect genomics research community. The resulting gene set (OGS v1.0) combines both automatically predicted and manually curated gene models.Peer reviewedBiochemistry and Molecular BiologyEntomology and Plant Patholog

    Natural Variation in the Degree of Autonomous Endosperm Formation Reveals Independence and Constraints of Embryo Growth During Seed Development in Arabidopsis thaliana

    No full text
    Seed development in flowering plants is a paradigm for the coordination of different tissues during organ growth. It requires a tight interplay between the two typically sexually produced structures: the embryo, developing from the fertilized egg cell, and the endosperm, originating from a fertilized central cell, along with the surrounding maternal tissues. Little is known about the presumptive signal transduction pathways administering and coordinating these different tissues during seed growth and development. Recently, a new signal has been identified emanating from the fertilization of the egg cell that triggers central cell proliferation without prior fertilization. Here, we demonstrate that there exists a large natural genetic variation with respect to the outcome of this signaling process in the model plant Arabidopsis thaliana. By using a recombinant inbred line population between the two Arabidopsis accessions Bayreuth-0 and Shahdara, we have identified two genetic components that influence the development of unfertilized endosperm. Exploiting this natural variation, we could further dissect the interdependence of embryo and endosperm growth during early seed development. Our data show an unexpectedly large degree of independence in embryo growth, but also reveal the embryo's developmental restrictions with respect to endosperm size. This work provides a genetic framework for dissection of the interplay between embryo and endosperm during seed growth in plants

    Patronus is the elusive plant securin, preventing chromosome separation by antagonizing separase.

    Get PDF
    PNAS August 6, 2019 116 (32) 16018-16027; first published July 19, 2019Accurate chromosome segregation at mitosis and meiosis is crucial to prevent genome instability, birth defect, and cancer. Accordingly, separase, the protease that triggers chromosome distribution, is tightly regulated by a direct inhibitor, the securin. However, securin has not been identified, neither functionnally nor by sequence similarity, in other clades that fungi and animals. This raised doubts about the conservation of this mechanism in other branches of eukaryotes. Here, we identify and characterize the securin in plants. Despite extreme sequence divergence, the securin kept the same core function and is likely a universal regulator of cell division in eukaryotes

    Patronus is the elusive plant securin, preventing chromosome separation by antagonizing separase

    Get PDF
    International audienceChromosome distribution at anaphase of mitosis and meiosis is triggered by separase, an evolutionarily conserved protease. Separase must be tightly regulated to prevent the untimely release of chromatid cohesion and disastrous chromosome distribution defects. Securin is the key inhibitor of separase in animals and fungi, but has not been identified in other eukaryotic lineages. Here, we identified PATRONUS1 and PATRONUS2 (PANS1 and PANS2) as the Arabidopsis homologs of securin. Disruption of PANS1 is known to lead to the premature separation of chromosomes at meiosis, and the simultaneous disruption of PANS1 and PANS2 is lethal. Here, we show that PANS1 targeting by the anaphase-promoting complex is required to trigger chromosome separation, mirroring the regulation of securin. We showed that PANS1 acts independently from Shugosins. In a genetic screen for pans1 suppressors, we identified SEPARASE mutants, showing that PANS1 and SEPARASE have antagonistic functions in vivo. Finally, we showed that the PANS1 and PANS2 proteins interact directly with SEPARASE. Altogether, our results show that PANS1 and PANS2 act as a plant securin. Remote sequence similarity was identified between the plant patronus family and animal securins, suggesting that they indeed derive from a common ancestor. Identification of patronus as the elusive plant securin illustrates the extreme sequence divergence of this central regulator of mitosis and meiosis
    • 

    corecore