Nara Institute of Science and Technology

NAIST Academic Repository
Not a member yet
    11716 research outputs found

    タンキ オヨビ チョウタンキ ノ ケツアツ ヘンドウセイ ノ カンレンセイ ニ カンスル ケンキュウ

    No full text
    博第1881号博士(工学)奈良先端科学技術大学院大

    Annotation-Scheme Reconstruction for “Fake News” and Japanese Fake News Dataset

    No full text
    Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), Marseille, 20-25 June 2022Fake news provokes many societal problems; therefore, there has been extensive research on fake news detection tasks to counter it. Many fake news datasets were constructed as resources to facilitate this task. Contemporary research focuses almost exclusively on the factuality aspect of the news. However, this aspect alone is insufficient to explain “fake news,” which is a complex phenomenon that involves a wide range of issues. To fully understand the nature of each instance of fake news, it is important to observe it from various perspectives, such as the intention of the false news disseminator, the harmfulness of the news to our society, and the target of the news. We propose a novel annotation scheme with fine-grained labeling based on detailed investigations of existing fake news datasets to capture these various aspects of fake news. Using the annotation scheme, we construct and publish the first Japanese fake news dataset. The annotation scheme is expected to provide an in-depth understanding of fake news. We plan to build datasets for both Japanese and other languages using our scheme. Our Japanese dataset is published at https://hkefka385.github.io/dataset/fakenews-japanese/

    The Effect of COVID-19 on the Transit System in Two Regions: Japan and USA

    No full text
    2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT),12-16 Dec. 2021,Dubai, United Arab EmiratesThe communication revolution that happened in the last ten years has increased the use of technology in the transportation world. Intelligent Transportation Systems wish to predict how many buses are needed in a transit system. With the pandemic effect that the world has faced since early 2020, it is essential to study the impact of the pandemic on the transit system. This paper proposes the leverage of Internet of Things (IoT) devices to predict the number of bus ridership before and during the pandemic. We compare the collected data from Kobe city, Hyogo, Japan, with data gathered from a college city in Virginia, USA. Our goal is to show the effect of the pandemic on ridership through the year 2020 in two different countries. The ultimate goal is to help transit system managers predict how many buses are needed if another pandemic hits

    Sperm IZUMO1 Is Required for Binding Preceding Fusion With Oolemma in Mice and Rats

    No full text
    Fertilization occurs as the culmination of multi-step complex processes. First, mammalian spermatozoa undergo the acrosome reaction to become fusion-competent. Then, the acrosome-reacted spermatozoa penetrate the zona pellucida and adhere to and finally fuse with the egg plasma membrane. IZUMO1 is the first sperm protein proven to be essential for sperm-egg fusion in mammals, as Izumo1 knockout mouse spermatozoa adhere to but fail to fuse with the oolemma. However, the IZUMO1 function in other species remains largely unknown. Here, we generated Izumo1 knockout rats by CRISPR/Cas9 and found the male rats were infertile. Unlike in mice, Izumo1 knockout rat spermatozoa failed to bind to the oolemma. Further investigation revealed that the acrosome-intact sperm binding conceals a decreased number of the acrosome-reacted sperm bound to the oolemma in Izumo1 knockout mice. Of note, we could not see any apparent defects in the binding of the acrosome-reacted sperm to the oolemma in the mice lacking recently found fusion-indispensable genes, Fimp, Sof1, Spaca6, or Tmem95. Collectively, our data suggest that IZUMO1 is required for the sperm-oolemma binding prior to fusion at least in rat

    Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases

    No full text
    The O-methylation of specialized metabolites in plants is a unique decoration that provides structural and functional diversity of the metabolites with changes in chemical properties and intracellular localizations. The O-methylation of flavonoids, which is a class of plant specialized metabolites, promotes their antimicrobial activities and liposolubility. Flavonoid O-methyltransferases (FOMTs), which are responsible for the O-methylation process of the flavonoid aglycone, generally accept a broad range of substrates across flavones, flavonols and lignin precursors, with different substrate preferences. Therefore, the characterization of FOMTs with the physiology roles of methoxylated flavonoids is useful for crop improvement and metabolic engineering. In this review, we summarized the chemodiversity and physiology roles of methoxylated flavonoids, which were already reported, and we performed a cross-species comparison to illustrate an overview of diversification and conserved catalytic sites of the flavonoid O-methyltransferases

    Preface to the special issue “Stem cell reformation in plants”

    No full text

    Induction and Aggravation of the Endoplasmic-Reticulum Stress by Membrane-Lipid Metabolic Intermediate Phosphatidyl-N-Monomethylethanolamine

    No full text
    Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME

    Super-resolution analysis of PACSIN2 and EHD2 at caveolae

    No full text
    Caveolae are plasma membrane invaginations that play important roles in both endocytosis and membrane tension buffering. Typical caveolae have invaginated structures with a high-density caveolin assembly. Membrane sculpting proteins, including PACSIN2 and EHD2, are involved in caveolar biogenesis. PACSIN2 is an F-BAR domain-containing protein with a membrane sculpting ability that is essential for caveolar shaping. EHD2 is also localized at caveolae and involved in their stability. However, the spatial relationship between PACSIN2, EHD2, and caveolin has not yet been investigated. We observed the single-molecule localizations of PACSIN2 and EHD2 relative to caveolin-1 in three-dimensional space. The single-molecule localizations were grouped by their proximity localizations into the geometric structures of blobs. In caveolin-1 blobs, PACSIN2, EHD2, and caveolin-1 had overlapped spatial localizations. Interestingly, the mean centroid of the PACSIN2 F-BAR domain at the caveolin-1 blobs was closer to the plasma membrane than those of EHD2 and caveolin-1, suggesting that PACSIN2 is involved in connecting caveolae to the plasma membrane. Most of the blobs with volumes typical of caveolae had PACSIN2 and EHD2, in contrast to those with smaller volumes. Therefore, PACSIN2 and EHD2 are apparently localized at typically sized caveolae

    1,448

    full texts

    11,716

    metadata records
    Updated in last 30 days.
    NAIST Academic Repository is based in Japan
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇