795 research outputs found

    Braking indices of young radio pulsars: theoretical perspective

    Get PDF
    Recently, Parthsarathy et al. analysed long-term timing observations of 85 young radio pulsars. They found that 15 objects have absolute values of braking indices ranging ∼10 βˆ’ 3000, far from the classical value n = 3. They also noted a mild correlation between measured value of n and characteristic age of a radio pulsar. In this article we systematically analyse possible physical origin of large braking indices. We find that a small fraction of these measurements could be caused by gravitational acceleration from an unseen ultra-wide companion of a pulsar or by precession. Remaining braking indices cannot be explained neither by pulsar obliquity angle evolution, nor by complex high-order multipole structure of the poloidal magnetic field. The most plausible explanation is a decay of the poloidal dipole magnetic field which operates on a time scale ∼104 βˆ’ 105 years in some young objects, but has significantly longer time scale in other radio pulsars. This decay can explain both amplitude of measured n and some correlation between n and characteristic age. The decay can be caused by either enhanced crystal impurities in the crust of some isolated radio pulsars, or more likely, by enhanced resistivity related to electron scattering off phonons due to slow cooling of low-mass neutron stars. If this effect is indeed the main cause of the rapid magnetic field decay manifesting as large braking indices, we predict that pulsars with large braking indices are hotter in comparison to those with n β‰ˆ 3

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    Discovery of X-Rays from the Old and Faint Pulsar J1154-6250

    Get PDF
    We report on the first X-ray observation of the 0.28 s isolated radio pulsar PSR J1154-6250 obtained with the XMM-Newton observatory in 2018 February. A point-like source is firmly detected at a position consistent with that of PSR J1154-6250. The two closest stars are outside the 3 sigma confidence limits of the source position and thus unlikely to be responsible for the observed X-ray emission. The energy spectrum of the source can be fitted equally well either with an absorbed power law with a steep photon index Gamma approximate to 3.3 or with an absorbed blackbody with temperature kT = 0.21 +/- 0.04 keV and emitting radius R-BB approximate to 80 m (assuming a distance of 1.36 kpc). The X-ray luminosity of 4.4 x 10(30) erg s(-1) derived with the power-law fit corresponds to an efficiency of eta(X) = L-X(unabs) /(E) over dot= 4.5 x 10(-3), similar to those of other old pulsars. The X-ray properties of PSR J1154-6250 are consistent with an old age and suggest that the spatial coincidence of this pulsar with the OB association Cm OB1 is due to a chance alignment

    UBR5 is a Novel E3 Ubiquitin Ligase involved in Skeletal Muscle Hypertrophy and Recovery from Atrophy

    Get PDF
    We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, was epigenetically altered (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression was positively correlated with increased lean leg mass in humans [1]. This was counterintuitive given the well-defined role of other E3 ligase family members, MuRF1 and MAFbx in muscle atrophy. Therefore, in the present study we aimed to investigate this relatively uncharacterised E3 ubiquitin ligase using multiple in-vivo and in-vitro models of skeletal muscle atrophy, injury, recovery from atrophy as well as anabolism and hypertrophy. We report for the first time, that during atrophy evoked by tetrodotoxin (TTX) nerve silencing in rats, the UBR5 promoter was significantly hypomethylated with a concomitant increase in gene expression early (3 & 7 days) after the induction of atrophy. However, at these timepoints larger increases in MuRF1/MAFbx were observed, and UBR5 expression had returned to baseline levels during later atrophy (14 days) where muscle mass loss was greatest. We confirmed an alternate gene expression profile for UBR5 versus MuRF1/MAFbx in a secondary model of atrophy induced by 7 days continuous low frequency electrical stimulation, where UBR5 demonstrated no significant increase, whereas MuRF1/MAFbx were elevated. Further, after partial (52%) recovery of muscle mass following 7 days TTX-cessation, UBR5 was hypomethylated and increased at the gene expression level, while alternately, reductions in gene expression of MuRF1 and MAFbx were observed. To substantiate these gene expression findings, we observed a significant increase in UBR5 protein abundance after full recovery (14 days) of muscle mass from hindlimb unloading (HU) in rats. Aged rats also demonstrated a similar temporal increase in UBR5 protein abundance after recovery from HU. Further, we confirmed significant increases in UBR5 protein during recovery from nerve crush injury in mice at 28 and 45 days, that related to a full recovery of muscle mass between 45-60 days. During anabolism and hypertrophy, UBR5 gene expression increased following an acute bout of mechanical loading in three-dimensional bioengineered mouse muscle in-vitro, and after chronic electrical stimulation-induced hypertrophy in rats in-vivo, without increases in MuRF1/MAFbx. Additionally, increased UBR5 protein abundance was identified following synergist ablation/functional overload (FO)-induced hypertrophy of the plantaris muscle in mice in-vivo, and finally over a 7-day time-course of regeneration in primary human muscle cells in-vitro. Finally, genetic association studies (> 700,000 SNPs) in human cohorts identified that the A alleles of rs10505025 and rs4734621 SNPs were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power versus endurance/untrained phenotypes. Overall, we suggest that UBR5 is a novel E3 ubiquitin ligase that is alternatively regulated compared to MuRF1/MAFbx, and is elevated during early atrophy (but not later atrophy), recovery, anabolism and hypertrophy in animals in-vivo as well as during human muscle cell regeneration in-vitro. In humans, genetic variations of the UBR5 gene are strongly associated with larger fast-twitch muscle fibres and strength/power performance

    Carney-Complex: Multiple resections of recurrent cardiac myxoma

    Get PDF
    We report a case of a female patient who was operated at the third relapse of an atrial myxoma caused by Carney complex. The difficult operation was performed without any complications despite extensive adhesions caused by the previous operations. The further inpatient course went without complications and the patient was discharged to the consecutive treatment on the 9th postoperative day. The echocardiographic finding postoperative showed no abnormalities

    DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity.

    Get PDF
    Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4Β years) and aged (83 ± 4Β years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72Β h, 7, 10Β days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7Β days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6-8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7Β days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes

    Ultraviolet Extinction and Visible Transparency by Ivy Nanoparticles

    Get PDF
    Though much research has been conducted for nanoparticles, naturally occurring nanoparticles have not yet been well explored for their diverse properties and potential applications. This paper reports the optical absorption and scattering properties of nanoparticles secreted by English ivy. Both experimental and theoretical studies have been conducted. Strong ultraviolet extinction and excellent visible transparency are observed, compared to the inorganic TiO2 and ZnO nanoparticles at similar concentrations. The contributions of absorption and scattering to the total extinction are quantified by simulation of the Mie scattering theory

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
    • …
    corecore