1,302 research outputs found
The space group classification of topological band insulators
Topological band insulators (TBIs) are bulk insulating materials which
feature topologically protected metallic states on their boundary. The existing
classification departs from time-reversal symmetry, but the role of the crystal
lattice symmetries in the physics of these topological states remained elusive.
Here we provide the classification of TBIs protected not only by time-reversal,
but also by crystalline symmetries. We find three broad classes of topological
states: (a) Gamma-states robust against general time-reversal invariant
perturbations; (b) Translationally-active states protected from elastic
scattering, but susceptible to topological crystalline disorder; (c) Valley
topological insulators sensitive to the effects of non-topological and
crystalline disorder. These three classes give rise to 18 different
two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route
for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic
Global analysis of charge exchange meson production at high energies
Many experiments that are conducted to study the hadron spectrum rely on peripheral resonance production. Hereby, the rapidity gap allows the process to be viewed as an independent fragmentation of the beam and the target, with the beam fragmentation dominated by production and decays of meson resonances. We test this separation by determining the kinematic regimes that are dominated by factorizable contributions, indicating the most favorable regions to perform this kind of experiments. In doing so, we use a Regge model to analyze the available world data of charge exchange meson production with beam momentum above 5 GeV in the laboratory frame that are not dominated by either pion or Pomeron exchanges. We determine the Regge residues and point out the kinematic regimes which are dominated by factorizable contributions
Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain
Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables
We show that Branching-time temporal logics CTL and CTL*, as well as
Alternating-time temporal logics ATL and ATL*, are as semantically expressive
in the language with a single propositional variable as they are in the full
language, i.e., with an unlimited supply of propositional variables. It follows
that satisfiability for CTL, as well as for ATL, with a single variable is
EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a
single variable is 2EXPTIME-complete,--i.e., for these logics, the
satisfiability for formulas with only one variable is as hard as satisfiability
for arbitrary formulas.Comment: Prefinal version of the published pape
Spectral Parameters for Scattering Amplitudes in N=4 Super Yang-Mills Theory
49 pages, 20 figures; v2: typos fixedPlanar N=4 Super Yang-Mills theory appears to be a quantum integrable four-dimensional conformal theory. This has been used to find equations believed to describe its exact spectrum of anomalous dimensions. Integrability seemingly also extends to the planar space-time scattering amplitudes of the N=4 model, which show strong signs of Yangian invariance. However, in contradistinction to the spectral problem, this has not yet led to equations determining the exact amplitudes. We propose that the missing element is the spectral parameter, ubiquitous in integrable models. We show that it may indeed be included into recent on-shell approaches to scattering amplitude integrands, providing a natural deformation of the latter. Under some constraints, Yangian symmetry is preserved. Finally we speculate that the spectral parameter might also be the regulator of choice for controlling the infrared divergences appearing when integrating the integrands in exactly four dimensions.Peer reviewe
Eye Movements Predict Recollective Experience
Previously encountered stimuli can bring to mind a vivid memory of the episodic context in which the stimulus was first experienced ("remembered'' stimuli), or can simply seem familiar ("known'' stimuli). Past studies suggest that more attentional resources are required to encode stimuli that are subsequently remembered than known. However, it is unclear if the attentional resources are distributed differently during encoding and recognition of remembered and known stimuli. Here, we record eye movements while participants encode photos, and later while indicating whether the photos are remembered, known or new. Eye fixations were more clustered during both encoding and recognition of remembered photos relative to known photos. Thus, recognition of photos that bring to mind a vivid memory for the episodic context in which they were experienced is associated with less distributed overt attention during encoding and recognition. The results suggest that remembering is related to encoding of a few distinct details of a photo rather than the photo as a whole. In turn, during recognition remembering may be trigged by enhanced memory for the salient details of the photos
A REVISION OF MALESIAN ISACHNE SECT. ISACHNE (GRAMINEAE, PANICOIDEAE, ISACHNEAE)
ISKANDAR, E.A.P. & VELDKAMP, J.F. 2004. A revision of Malesian Isachne sect. Isachne (Gramineae, Panicoideae, Isachneae). Reinwardtia 12 (2): 159 – 179. – There are ca. 23 species of Isachne in Malesia of which the seven belonging to sect. Isachne are treated here. Isachne miliacea Roth has been misapplied to I. minutula (Gaudich.) Kunth, as its type belongs to I. globosa (Thunb.) Kuntze. Isachne pulchella Roth is the correct name for I. dispar Trin
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Brain computer tomography in critically ill patients -- a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients.</p> <p>Methods</p> <p>In a prospective observational study data were collected during one year on the reasons to request a brain CT, expected abnormalities, abnormalities found by the radiologist and consequences for treatment. An “expected abnormality” was any finding that had been predicted by the physician requesting the brain CT. A brain CT was “diagnostically positive”, if the abnormality found was new or if an already known abnormality was increased. It was “diagnostically negative” if an already known abnormality was unchanged or if an expected abnormality was not found. The treatment consequences of the brain CT, were registered as “treatment as planned”, “treatment changed, not as planned”, “treatment unchanged”.</p> <p>Results</p> <p>Data of 225 brain CT in 175 patients were analyzed. In 115 (51%) brain CT the abnormalities found were new or increased known abnormalities. 115 (51%) brain CT were found to be diagnostically positive. In the medical group 29 (39%) of brain CT were positive, in the surgical group 86 (57%), <it>p</it> 0.01. After a positive brain CT, in which the expected abnormalities were found, treatment was changed as planned in 33%, and in 19% treatment was changed otherwise than planned.</p> <p>Conclusions</p> <p>The results of this study show that the diagnostic and therapeutic yield of brain CT in critically ill patients is moderate. The development of guidelines regarding the decision rules for performing a brain CT in ICU patients is needed.</p
- …
