3,893 research outputs found

    Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    Full text link
    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy Esym(ρ)E_{sym}(\rho) lead to significantly different predictions on several Esym(ρ)E_{sym}(\rho)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the Esym(ρ)E_{sym}(\rho) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter.Comment: The version to appear in Nucl. Phys. A. A paragraph and a figure on neutron and proton effective masses in neutron-rich matter are adde

    Effect of multilayered nanostructures on the physico-mechanical properties of ethylene vinyl acetate-based hybrid nanocomposites.

    Get PDF
    Exfoliated graphene oxide (GO) and Mg-Al-layered double hydroxides (LDHs) nanostructures (LDHs@GO)-filled ethylene vinyl acetate (EVA)-based hybrid nanocomposites were prepared by solution reflux technique followed by injection molding. The physico-mechanical (including morphological, thermal, and mechanical) properties of LDHs@GO-based-layered nanostructures and EVA/LDHs@GO (0-1 wt%)-based hybrid nanocomposites were analyzed by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, wide and low angle X-ray diffraction spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical (tensile and elongation at break) testing. The morphological studies revealed that LDHs sheets were homogeneously inserted in between GO sheets, while LDHs@GO-based-layered nanostructures were found to be easily exfoliated in EVA/LDHs@GO hybrid nanocomposites up to 0.7 wt% loading after which agglomeration occurred. The thermal stability of the hybrid nanocomposites was found to be improved at highest LDHs@GO loading of 0.7 wt%. Mechanical properties (tensile strength and elongation at break) of the hybrid nanocomposites were observed to be enhanced by 70 and 80%, respectively, at LDHs@GO loading of 0.7 wt% and highest values of mechanical properties were obtained. Though, the morphological, thermal, and mechanical properties of the composites were improved, the FTIR analysis did not reveal any chemical interaction between EVA and the LDHs@GO-based-layered nanostructures. From the overall results, it is obvious that a significant synergism was observed in terms of morphological, thermal, and mechanical properties of EVA/LDHs@GO hybrid nanocomposites with optimum (less than 1 wt%) loading of LDHs@GO-based-layered nanostructures

    CFD based Investigations for the Design of Severe Service Control Valves used in Energy Systems

    Get PDF
    Multistage severe service control valves are extensively used in various energy systems, such as oil & gas, nuclear etc. The primary purpose of such valves is to control the amount of fluid flow passing through them under extreme pressure changes. As opposed to the conventional valves (butterfly, gate etc.), control valves are often installed in energy systems with geometrically complex trims, comprising of various geometrical features, formed by a complex arrangement of cylindrical arrays. The pressure within the trim varies in controlled steps and hence, cavitation resistance can be embedded in the trim through improved design process for the trim for severe service applications in energy systems. The flow characteristics within a control valve are quite complex, owing to complex geometrical features inherent in such designs, which makes it extremely difficult to isolate and quantify contribution of these features on the flow characteristics. One of the most important design parameters of such trims is the flow coefficient (also known as flow capacity) of the trim which depends on the geometrical features of the trim. The design of valves for particular performance envelop within the energy systems depends on effects of complex trim geometrical features on performance characteristics; hence, the focus of recent research is on quantifying the hydrodynamic behaviour of severe service control valves, including the trims. This includes the estimation of the local flow capacity contributions of the geometrical features of the trim through detailed numerical investigations. In this work, a tool has been developed that can be used to predict the local contribution of geometrical features on the flow coefficient of the trim. It is expected that this work will result in better performance of the energy systems where these valves are used

    Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size

    Get PDF
    AbstractThe effects of photosystem II antenna size on reaction center-type energy-dependent quenching (qE) were examined in rice plants grown under two different light intensities using both wild type and qE-less (OsPsbS knockout) mutant plants. Reaction center-type qE was detected by measuring non-photochemical quenching at 50 μmol photons m−2 s−1 white light intensity. We observed that in low light-grown rice plants, reaction center-type qE was higher than in high light-grown plants, and the amount of reaction center-type qE did not depend on zeaxanthin accumulation. This was confirmed in Arabidopsis npq1–2 mutant plants that lack zeaxanthin due to a mutation in the violaxanthin de-epoxidase enzyme. Although the electron transport rate measured at a light intensity of 50 μmol photons m−2 s−1 was the same in high light- and low light-grown wild type and mutant plants lacking PsbS protein, the generation of energy-dependent quenching was completely impaired only in mutant plants. Analyses of the pigment content, Lhcb proteins and D1 protein of PSII showed that the antenna size was larger in low light-grown plants, and this correlated with the amount of reaction center-type qE. Our results mark the first time that the reaction center-type qE has been shown to depend on photosystem II antenna size and, although it depends on the existence of PsbS protein, the extent of reaction center-type qE does not correlate with the transcript levels of PsbS protein. The presence of reaction center-type energy-dependent quenching, in addition to antenna-type quenching, in higher plants for dissipation of excess light energy demonstrates the complexity and flexibility of the photosynthetic apparatus of higher plants to respond to different environmental conditions

    Isospin dependence of collective flow in heavy-ion collisions at intermediate energies

    Get PDF
    Within the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (BUU) model using initial proton and neutron densities calculated from the nonlinear relativistic mean-field (RMF) theory, we compare the strength of transverse collective flow in reactions 48Ca+58Fe^{48}Ca+^{58}Fe and 48Cr+58Ni^{48}Cr+^{58}Ni, which have the same mass number but different neutron/proton ratios. The neutron-rich system (48Ca+58Fe^{48}Ca+^{58}Fe) is found to show significantly stronger negative deflection and consequently has a higher balance energy, especially in peripheral collisions. NOTE ADDED IN PROOF: The new phenomenon predicted in this work has just been confirmed by an experiment done by G.D. Westfall et al. using the NSCL/MSU radioactive beam facility and a spartan soccer. A paper by R. Pak et al. is submitted to PRL to report the experimental result.Comment: Latex file, 9 pages, 4 figures availabe upon request; Phys. Rev. Lett. (June 3, 1996) in pres

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants

    Get PDF
    "This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission."[EN] Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering.This research was supported by grants BIO2014-54269-R and AGL2013-49919-EXP to J-AD and AGL2013-42537-R to J-JL-M from the Ministerio de Economia y Competitividad (MINECO, co-financed FEDER funds), Spain. MM was supported by the Erasmus Mundus Scholarship-ACTION 2 WELCOME program of the European Commission. Research in CRAG is supported in part by CERCA (Generalitat de Catalunya) and by "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533).Cordero, T.; Mohamed, M.; Lopez Moya, J.; Daros Arnau, JA. (2017). A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Frontiers in Microbiology. 8:1-11. https://doi.org/10.3389/fmicb.2017.00611S1118Abdel-Hafez, S. I. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., Daròs, J.-A., & Mohamed, M. A. (2016). Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6(2). doi:10.1007/s13205-016-0515-6Allan, A. C., Hellens, R. P., & Laing, W. A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13(3), 99-102. doi:10.1016/j.tplants.2007.11.012An, C. H., Lee, K.-W., Lee, S.-H., Jeong, Y. J., Woo, S. G., Chun, H., … Kim, C. Y. (2015). Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiology and Biochemistry, 89, 1-10. doi:10.1016/j.plaphy.2015.02.002Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., & Pirone, T. P. (1995). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology, 76(2), 265-270. doi:10.1099/0022-1317-76-2-265Baulcombe, D. C., Chapman, S., & Cruz, S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. The Plant Journal, 7(6), 1045-1053. doi:10.1046/j.1365-313x.1995.07061045.xBedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922Boyer, J.-C., & Haenni, A.-L. (1994). Infectious Transcripts and cDNA Clones of RNA Viruses. Virology, 198(2), 415-426. doi:10.1006/viro.1994.1053Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295Cordero, T., Cerdán, L., Carbonell, A., Katsarou, K., Kalantidis, K., & Daròs, J.-A. (2017). Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 30(1), 63-71. doi:10.1094/mpmi-11-16-0239-rDolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00453Engler, C., & Marillonnet, S. (2013). Golden Gate Cloning. Methods in Molecular Biology, 119-131. doi:10.1007/978-1-62703-764-8_9FRENCH, R., JANDA, M., & AHLQUIST, P. (1986). Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells. Science, 231(4743), 1294-1297. doi:10.1126/science.231.4743.1294Gibbs, A., & Ohshima, K. (2010). Potyviruses and the Digital Revolution. Annual Review of Phytopathology, 48(1), 205-223. doi:10.1146/annurev-phyto-073009-114404Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences, 93(22), 12400-12405. doi:10.1073/pnas.93.22.12400Joshi, R. L., Joshi, V., & Ow, D. W. (1990). BSMV genome mediated expression of a foreign gene in dicot and monocot plant cells. The EMBO Journal, 9(9), 2663-2669. doi:10.1002/j.1460-2075.1990.tb07451.xKarasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332Kelloniemi, J., Mäkinen, K., & Valkonen, J. P. T. (2008). Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 135(2), 282-291. doi:10.1016/j.virusres.2008.04.006Krenz, B., Bronikowski, A., Lu, X., Ziebell, H., Thompson, J. R., & Perry, K. L. (2015). Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. Journal of General Virology, 96(9), 2904-2912. doi:10.1099/vir.0.000185Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N., & Singh, D. K. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology, 9(1), 38. doi:10.1186/1477-3155-9-38López-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094Mishra, S., & Singh, H. B. (2014). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99(3), 1097-1107. doi:10.1007/s00253-014-6296-0Nie, B., Singh, M., Sullivan, A., Singh, R. P., Xie, C., & Nie, X. (2011). Recognition and Molecular Discrimination of Severe and Mild PVYO Variants of Potato virus Y in Potato in New Brunswick, Canada. Plant Disease, 95(2), 113-119. doi:10.1094/pdis-04-10-0257Olspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive‐sense RNA virus family Potyviridae. EMBO reports, 16(8), 995-1004. doi:10.15252/embr.201540509Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00153Quenouille, J., Vassilakos, N., & Moury, B. (2013). Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology, 14(5), 439-452. doi:10.1111/mpp.12024Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA Polymerase Slippage as a Mechanism for the Production of Frameshift Gene Products in Plant Viruses of the Potyviridae Family. Journal of Virology, 89(13), 6965-6967. doi:10.1128/jvi.00337-15Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., … Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111-129. doi:10.1016/j.tibs.2016.09.010Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-taSaxena, P., Hsieh, Y.-C., Alvarado, V. Y., Sainsbury, F., Saunders, K., Lomonossoff, G. P., & Scholthof, H. B. (2010). Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 9(6), 703-712. doi:10.1111/j.1467-7652.2010.00574.xSCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.xThole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563Tilsner, J., & Oparka, K. J. (2010). Tracking the green invaders: advances in imaging virus infection in plants. Biochemical Journal, 430(1), 21-37. doi:10.1042/bj20100372Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90. doi:10.1016/j.pbi.2014.05.011Zhao, X., Yuan, Z., Fang, Y., Yin, Y., & Feng, L. (2012). Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. European Food Research and Technology, 236(1), 109-117. doi:10.1007/s00217-012-1869-

    Tensor total variation approach to optical coherence tomography reconstruction for improved visualization of retinal microvasculature

    Get PDF
    A novel optical coherence tomography (OCT) reconstruction approach is introduced for improved visualization of inner-retina capillaries in retinal OCT tomograms. The proposed method utilizes a minimization framework based on a tensor total variation (TTV) energy functional, to enforce capillary structural characteristics in the spatial domain. By accounting for structure tensor characteristics, the TTV reconstruction method allows for contrast enhancement of capillary structural characteristics. The novel TTV method was tested on high resolution OCT images acquired in-vivo from the foveal region of the retina of a healthy human subject. Experimental results demonstrate significant contrast and visibility enhancement of the inner retina capillaries in the retinal OCT tomograms, achieved by use of the TTV reconstruction method. Therefore, the TTV method has a strong potential for improved disease progression analysis based on the study of disease-induced changes in the inner retina vasculature

    Isospin Physics in Heavy-Ion Collisions at Intermediate Energies

    Get PDF
    In nuclear collisions induced by stable or radioactive neutron-rich nuclei a transient state of nuclear matter with an appreciable isospin asymmetry as well as thermal and compressional excitation can be created. This offers the possibility to study the properties of nuclear matter in the region between symmetric nuclear matter and pure neutron matter. In this review, we discuss recent theoretical studies of the equation of state of isospin-asymmetric nuclear matter and its relations to the properties of neutron stars and radioactive nuclei. Chemical and mechanical instabilities as well as the liquid-gas phase transition in asymmetric nuclear matter are investigated. The in-medium nucleon-nucleon cross sections at different isospin states are reviewed as they affect significantly the dynamics of heavy ion collisions induced by radioactive beams. We then discuss an isospin-dependent transport model, which includes different mean-field potentials and cross sections for the proton and neutron, and its application to these reactions. Furthermore, we review the comparisons between theoretical predictions and available experimental data. In particular, we discuss the study of nuclear stopping in terms of isospin equilibration, the dependence of nuclear collective flow and balance energy on the isospin-dependent nuclear equation of state and cross sections, the isospin dependence of total nuclear reaction cross sections, and the role of isospin in preequilibrium nucleon emissions and subthreshold pion production.Comment: 101 pages with embedded epsf figures, review article for "International Journal of Modern Physics E: Nuclear Physics". Send request for a hard copy to 1/author

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
    corecore