24 research outputs found

    ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA

    Get PDF
    [EN] Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial role to determine half-life of key negative regulators of hormone signaling. For ABA signaling, degradation of clade A PP2Cs, such as PP2CA or ABI1, is a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. ABA promotes the degradation of PP2CA through the RGLG1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG1 with PP2CA given they are predominantly found in plasma membrane and nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG1 and promotes nuclear interaction with PP2CA. We found RGLG1 is myristoylated in vivo, which facilitates its attachment to plasma membrane. ABA inhibits myristoylation of RGLG1 through downregulation of Nmyristoyltransferase1 (NMT1) and promotes nuclear translocation of RGLG1 in a cycloheximide-insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP2CA protein levels and the formation of RGLG1-receptor-phosphatase complexes. We show that RGLG1Gly2Ala -mutated in the Nterminal myristoylation site- shows constitutive nuclear localization and causes enhanced response to ABA and salt/osmotic stress. RGLG1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG1-PP2CA-PYL8. In summary, we provide evidence that an E3 ligase can dynamically re-localize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG1-PP2CA interaction and hence PP2CA degradation.Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas through grants BIO2014-52537-R and BIO2017-82503-R. This work was also funded by grants from the Deutsche Forschungsgemeinschaft (DFG) Ku931/4-1 to J. K., and BA4742/1-2 to O.B. B.B. was funded by Programa VALi+ d GVA APOSTD/2017/039. J.J. was supported by an FPI contract from MINECOBelda Palazón, B.; Julian, J.; Coego, A.; Wu, Q.; Zhang, X.; Batistic, O.; Alquraishi, SA.... (2019). ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant Journal. 98(5):813-825. https://doi.org/10.1111/tpj.14274S813825985Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root      . Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678Belda-Palazon, B., Gonzalez-Garcia, M.-P., Lozano-Juste, J., Coego, A., Antoni, R., Julian, J., … Rodriguez, P. L. (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences, 115(50), E11857-E11863. doi:10.1073/pnas.1815410115Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs    . Plant Physiology, 160(1), 379-395. doi:10.1104/pp.112.202408Bigeard, J., & Hirt, H. (2018). Nuclear Signaling of Plant MAPKs. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00469Boisson, B., Giglione, C., & Meinnel, T. (2003). Unexpected Protein Families Including Cell Defense Components Feature in the N-Myristoylome of a Higher Eukaryote. Journal of Biological Chemistry, 278(44), 43418-43429. doi:10.1074/jbc.m307321200Burnaevskiy, N., Fox, T. G., Plymire, D. A., Ertelt, J. M., Weigele, B. A., Selyunin, A. S., … Alto, N. M. (2013). Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature, 496(7443), 106-109. doi:10.1038/nature12004Burnaevskiy, N., Peng, T., Reddick, L. E., Hang, H. C., & Alto, N. M. (2015). Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Molecular Cell, 58(1), 110-122. doi:10.1016/j.molcel.2015.01.040Chaumet, A., Wright, G. D., Seet, S. H., Tham, K. M., Gounko, N. V., & Bard, F. (2015). Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nature Communications, 6(1). doi:10.1038/ncomms9218Cheng, M.-C., Hsieh, E.-J., Chen, J.-H., Chen, H.-Y., & Lin, T.-P. (2011). Arabidopsis RGLG2, Functioning as a RING E3 Ligase, Interacts with AtERF53 and Negatively Regulates the Plant Drought Stress Response    . Plant Physiology, 158(1), 363-375. doi:10.1104/pp.111.189738Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCurtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122Edel, K. H., & Kudla, J. (2016). Integration of calcium and ABA signaling. Current Opinion in Plant Biology, 33, 83-91. doi:10.1016/j.pbi.2016.06.010French, A. P., Mills, S., Swarup, R., Bennett, M. J., & Pridmore, T. P. (2008). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 3(4), 619-628. doi:10.1038/nprot.2008.31Gehl, C., Waadt, R., Kudla, J., Mendel, R.-R., & Hänsch, R. (2009). New GATEWAY vectors for High Throughput Analyses of Protein–Protein Interactions by Bimolecular Fluorescence Complementation. Molecular Plant, 2(5), 1051-1058. doi:10.1093/mp/ssp040Herranz, M. C., Pallas, V., & Aparicio, F. (2012). Multifunctional Roles for the N-Terminal Basic Motif of Alfalfa mosaic virus Coat Protein: Nucleolar/Cytoplasmic Shuttling, Modulation of RNA-Binding Activity, and Virion Formation. Molecular Plant-Microbe Interactions®, 25(8), 1093-1103. doi:10.1094/mpmi-04-12-0079-rHornáček, M., Kováčik, L., Mazel, T., Cmarko, D., Bártová, E., Raška, I., & Smirnov, E. (2017). Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus, 8(4), 421-432. doi:10.1080/19491034.2017.1306160Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA  . Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106Lee, H.-J., Park, Y.-J., Seo, P. J., Kim, J.-H., Sim, H.-J., Kim, S.-G., & Park, C.-M. (2015). Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. The Plant Cell, 27(12), 3425-3438. doi:10.1105/tpc.15.00371Leitner, J., Petrasek, J., Tomanov, K., Retzer, K., Parezova, M., Korbei, B., … Luschnig, C. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proceedings of the National Academy of Sciences, 109(21), 8322-8327. doi:10.1073/pnas.1200824109Li, W., & Schmidt, W. (2010). A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. The Plant Journal, 62(2), 330-343. doi:10.1111/j.1365-313x.2010.04150.xLumba, S., Cutler, S., & McCourt, P. (2010). Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 26(1), 445-469. doi:10.1146/annurev-cellbio-100109-103956Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3Majeran, W., Le Caer, J.-P., Ponnala, L., Meinnel, T., & Giglione, C. (2018). Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. The Plant Cell, 30(3), 543-562. doi:10.1105/tpc.17.00523Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.xMoreno-Alvero, M., Yunta, C., Gonzalez-Guzman, M., Lozano-Juste, J., Benavente, J. L., Arbona, V., … Albert, A. (2017). Structure of Ligand-Bound Intermediates of Crop ABA Receptors Highlights PP2C as Necessary ABA Co-receptor. Molecular Plant, 10(9), 1250-1253. doi:10.1016/j.molp.2017.07.004NAKAGAWA, T., SUZUKI, T., MURATA, S., NAKAMURA, S., HINO, T., MAEO, K., … ISHIGURO, S. (2007). Improved Gateway Binary Vectors: High-Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants. Bioscience, Biotechnology, and Biochemistry, 71(8), 2095-2100. doi:10.1271/bbb.70216Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003Pierre, M., Traverso, J. A., Boisson, B., Domenichini, S., Bouchez, D., Giglione, C., & Meinnel, T. (2007). N-Myristoylation Regulates the SnRK1 Pathway inArabidopsis. The Plant Cell, 19(9), 2804-2821. doi:10.1105/tpc.107.051870Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance      . Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid      . Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174Saez, A., Rodrigues, A., Santiago, J., Rubio, S., & Rodriguez, P. L. (2008). HAB1–SWI3B Interaction Reveals a Link between Abscisic Acid Signaling and Putative SWI/SNF Chromatin-Remodeling Complexes in Arabidopsis. The Plant Cell, 20(11), 2972-2988. doi:10.1105/tpc.107.056705Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.xSantiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., … Botella, M. A. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell, 20(12), 3374-3388. doi:10.1105/tpc.108.063859Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors fromArabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. doi:10.1073/pnas.1706593114Turnbull, D., & Hemsley, P. A. (2017). Fats and function: protein lipid modifications in plant cell signalling. Current Opinion in Plant Biology, 40, 63-70. doi:10.1016/j.pbi.2017.07.007Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid inArabidopsis . The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179Wu, C., Feng, J., Wang, R., Liu, H., Yang, H., Rodriguez, P. L., … Wang, D. (2012). HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE, 7(4), e35764. doi:10.1371/journal.pone.0035764Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364Yin, X.-J., Volk, S., Ljung, K., Mehlmer, N., Dolezal, K., Ditengou, F., … Bachmair, A. (2007). Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. The Plant Cell, 19(6), 1898-1911. doi:10.1105/tpc.107.052035Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128Zhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., … An, C. (2012). Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis      . Plant Physiology, 160(2), 808-822. doi:10.1104/pp.112.20342

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed fastq format through the European Nucleotide Archive under accession number PRJEB44430, together with rescaled and trimmed bam sequence alignments against both the nuclear and mitochondrial horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390 and PRJEB31613, and detailed in Supplementary Table 1. The genomes of ten modern horses, publicly available, were also accessed as indicated in their corresponding original publications57,61,85-87.NOTE: see the published version available via the DOI in this record for the full list of authorsDomestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 BC. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture

    Data from: Evolutionary patterns and processes: lessons from ancient DNA

    No full text
    Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data

    Pros and cons of methylation-based enrichment methods for ancient DNA

    Get PDF
    Artículo de publicación ISIThe recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.Marie-Curie Career Integration grant FP7 CIG-293845 International Research Group Program, Deanship of Scientific Research (King Saud University, Saudi Arabia) IRG14-08 Marie-Curie Intra-European Fellowships FP7-IEF-328024 FP7 IEF-302617 Danish National Research Foundation DNRF9
    corecore