522 research outputs found

    Ab initio molecular dynamics simulations of Aluminum solvation

    Full text link
    The solvation of Al and its hydrolyzed species in water clusters has been studied by means of ab initio molecular dynamics simulations. The hexa-hydrate aluminum ion formed a stable complex in the finite temperature cluster simulation of one aluminum ion and 16 waters. The average dipole moment of strongly polarized hydrated water molecules in the first solvation shell of the hexa-hydrate aluminum ion was found to be 5.02 Debye. The deprotonated hexa-hydrate complex evolves into a tetra-coordinated aluminate ion with two water molecules in the second solvation shell forming hydrogen bonds to the hydroxyl groups in agreement with the observed coordination.Comment: 12 pages in Elsevier LaTeX, 5 figures in Postscript, 2 last figures are in color, submitted to Chemical Physics Letter

    Fredholm methods for billiard eigenfunctions in the coherent state representation

    Full text link
    We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory. We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy matrices and Maslov indices.Comment: 12 pages, 10 figures. Submitted to Phys. Rev. E. Comments or questions to [email protected]

    Long-lived oscillons from asymmetric bubbles

    Get PDF
    The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in 2+1 dimensional phi^4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are: a) circularly symmetric; and b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly-growing instabilities not seen through the usual ``spectral'' method.Comment: RevTeX 4, 9 pages, 11 figures. Revised version with a new approach to stability. Accepted to Phys. Rev.

    Universality of the Lyapunov regime for the Loschmidt echo

    Full text link
    The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish between classical and quantum origin for the different terms of the LE. This approach renders an understanding for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex

    Holographic dark energy in a non-flat universe with Granda-Oliveros cut-off

    Full text link
    Motivated by Granda and Oliveros (GO) model, we generalize their work to the non-flat case. We obtain the evolution of the dark energy density, the deceleration and the equation of state parameters for the holographic dark energy model in a non-flat universe with GO cut-off. In the limiting case of a flat universe, i.e. k=0k = 0, all results given in GO model are obtained.Comment: 11 pages, 5 figure

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore