The Loschmidt echo (LE) is a magnitude that measures the sensitivity of
quantum dynamics to perturbations in the Hamiltonian. For a certain regime of
the parameters, the LE decays exponentially with a rate given by the Lyapunov
exponent of the underlying classically chaotic system. We develop a
semiclassical theory, supported by numerical results in a Lorentz gas model,
which allows us to establish and characterize the universality of this Lyapunov
regime. In particular, the universality is evidenced by the semiclassical limit
of the Fermi wavelength going to zero, the behavior for times longer than
Ehrenfest time, the insensitivity with respect to the form of the perturbation
and the behavior of individual (non-averaged) initial conditions. Finally, by
elaborating a semiclassical approximation to the Wigner function, we are able
to distinguish between classical and quantum origin for the different terms of
the LE. This approach renders an understanding for the persistence of the
Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our
results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex