309 research outputs found

    Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Get PDF
    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially

    Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism

    Get PDF
    The formation of the protein segregation structure known as the “immunological synapse” in the contact region between B cells and antigen presenting cells appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse consists of a central cluster of B cell receptor/Antigen (BCR/Ag) complexes surrounded by a ring of LFA-1/ICAM-1 complexes. In this study, we used an in silico model to investigate whether cytoskeletally driven transport of molecules toward the center of the contact zone is a potential mechanism of immunological synapse formation in B cells. We modeled directed transport by the cytoskeleton in an effective manner, by biasing the diffusion of molecules toward the center of the contact zone. Our results clearly show that biased diffusion of BCR/Ag complexes on the B cell surface is sufficient to produce patterns similar to experimentally observed immunological synapses. This is true even in the presence of significant membrane deformation as a result of receptor–ligand binding, which in previous work we showed had a detrimental effect on synapse formation at high antigen affinity values. Comparison of our model’s results to those of experiments shows that our model produces synapses for realistic length, time, and affinity scales. Our results also show that strong biased diffusion of free molecules has a negative effect on synapse formation by excluding BCR/Ag complexes from the center of the contact zone. However, synapses may still form provided the bias in diffusion of free molecules is an order-of-magnitude weaker than that of BCR/Ag complexes. We also show how diffusion trajectories obtained from single-molecule tracking experiments can generate insight into the mechanism of synapse formation

    On the use of nanocellulose as reinforcement in polymer matrix composites

    Get PDF
    AbstractNanocellulose is often being regarded as the next generation renewable reinforcement for the production of high performance biocomposites. This feature article reviews the various nanocellulose reinforced polymer composites reported in literature and discusses the potential of nanocellulose as reinforcement for the production of renewable high performance polymer nanocomposites. The theoretical and experimentally determined tensile properties of nanocellulose are also reviewed. In addition to this, the reinforcing ability of BC and NFC is juxtaposed. In order to analyse the various cellulose-reinforced polymer nanocomposites reported in literature, Cox–Krenchel and rule-of-mixture models have been used to elucidate the potential of nanocellulose in composite applications. There may be potential for improvement since the tensile modulus and strength of most cellulose nanocomposites reported in literature scale linearly with the tensile modulus and strength of the cellulose nanopaper structures. Better dispersion of individual cellulose nanofibres in the polymer matrix may improve composite properties

    Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis

    Get PDF
    This study examined fiber type-dependent differences in the regulation of protein synthesis in individual muscle fibers found within the same whole muscle. Specifically, the in vivo SUrface SEnsing of Translation (SUnSET) methodology was used to measure protein synthesis in type 1, 2A, 2X and 2B fibers of the mouse plantaris muscle, in response to food deprivation (FD), and mechanical overload induced by synergist ablation (SA). The results show that 48 h of FD induced a greater decrease in protein synthesis in type 2X and 2B fibers compared to type 1 and 2A fibers. Type 2X and 2B fibers also had the largest FD-induced decrease in total S6 protein and Ser240/244 S6 phosphorylation, respectively. Moreover, only type 2X and 2B fibers displayed a FD-induced decrease in cross-sectional area (CSA). Ten days of SA also induced fiber type-dependent responses, with type 2B fibers having the smallest SA-induced increases in protein synthesis, CSA and Ser240/244 S6 phosphorylation, but the largest increase in total S6 protein. Embryonic myosin heavy chain (MHCEmb) positive fibers were also found in SA muscles and the protein synthesis rates, levels of S6 Ser240/244 phosphorylation, and total S6 protein content, were 3.6-, 6.1- and 2.9-fold greater than that found in fibers from control muscles, respectively. Overall, these results reveal differential responses in the regulation of protein synthesis and fiber size between fiber types found within the same whole muscle. Moreover, these findings demonstrate that changes found at the whole muscle level do not necessarily reflect changes in individual fiber types

    Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces

    Get PDF
    Studies of receptor diffusion on a cell surface show a variety of behaviors, such as diffusive, sub-diffusive, or super-diffusive motion. However, most studies to date focus on receptor molecules diffusing on a single cell surface. We have previously studied receptor diffusion to probe the molecular mechanism of receptor clustering at the cell–cell junction between two opposing cell surfaces. Here, we characterize the diffusion of receptors and ligands that bind to each other across two opposing cell surfaces, as in cell–cell and cell–bilayer interactions. We use a Monte Carlo method, where receptors and ligands are simulated as independent agents that bind and diffuse probabilistically. We vary receptor–ligand binding affinity and plot the molecule-averaged mean square displacement (MSD) of ligand molecules as a function of time. Our results show that MSD plots are qualitatively different for flat and curved interfaces, as well as between the cases of presence and absence of directed transport of receptor–ligand complexes toward a specific location on the interface. Receptor–ligand binding across two opposing surfaces leads to transient sub-diffusive motion at early times provided the interface is flat. This effect is entirely absent if the interface is curved, however, in this instance we observe sub-diffusive motion. In addition, a decrease in the equilibrium value of the MSD occurs as affinity increases, something which is absent for a flat interface. In the presence of directed transport of receptor–ligand complexes, we observe super-diffusive motion at early times for a flat interface. Super-diffusive motion is absent for a curved interface, however, in this case we observe a transient decrease in MSD with time prior to equilibration for high-affinity values

    Assessment of optimal strategies in a two-patch dengue transmission model with seasonality

    Get PDF
    Emerging and re-emerging dengue fever has posed serious problems to public health officials in many tropical and subtropical countries. Continuous traveling in seasonally varying areas makes it more difficult to control the spread of dengue fever. In this work, we consider a two-patch dengue model that can capture the movement of host individuals between and within patches using a residence-time matrix. A previous two-patch dengue model without seasonality is extended by adding host demographics and seasonal forcing in the transmission rates. We investigate the effects of human movement and seasonality on the two-patch dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue outbreaks in two patches. The roles of seasonality and residence-time configurations are highlighted in terms of the seasonal reproduction number and cumulative incidence. Moreover, optimal control theory is employed to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in the presence of seasonality. Our findings demonstrate that optimal patch-specific control strategies are sensitive to seasonality and residence-time scenarios. Targeting only the jungle (or endemic) is as effective as controlling both patches under weak coupling or symmetric mobility. However, focusing on intervention for the city (or high density areas) turns out to be optimal when two patches are strongly coupled with asymmetric mobility.ope

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs

    Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent

    Get PDF
    Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of ≥90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings

    Diversity of Bifidobacteria within the Infant Gut Microbiota

    Get PDF
    Background The human gastrointestinal tract (GIT) represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus. Methods/Principal Findings In the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland), feeding type (breast milk or formula) and mode of delivery (vaginal or caesarean delivery), while in four cases, faecal samples of corresponding mothers were also analyzed. Conclusions In contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant’s intestine
    corecore