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Abstract

Emerging and re-emerging dengue fever has posed serious problems to public health offi-

cials in many tropical and subtropical countries. Continuous traveling in seasonally varying

areas makes it more difficult to control the spread of dengue fever. In this work, we consider

a two-patch dengue model that can capture the movement of host individuals between and

within patches using a residence-time matrix. A previous two-patch dengue model without

seasonality is extended by adding host demographics and seasonal forcing in the transmis-

sion rates. We investigate the effects of human movement and seasonality on the two-patch

dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/

rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue out-

breaks in two patches. The roles of seasonality and residence-time configurations are

highlighted in terms of the seasonal reproduction number and cumulative incidence. More-

over, optimal control theory is employed to identify and evaluate patch-specific control mea-

sures aimed at reducing dengue prevalence in the presence of seasonality. Our findings

demonstrate that optimal patch-specific control strategies are sensitive to seasonality and

residence-time scenarios. Targeting only the jungle (or endemic) is as effective as control-

ling both patches under weak coupling or symmetric mobility. However, focusing on inter-

vention for the city (or high density areas) turns out to be optimal when two patches are

strongly coupled with asymmetric mobility.

Introduction

Dengue is one of the most important vector-borne diseases, affecting more than 50 million

people all around the world [1, 2]. Each year, there are 2.5 billion individuals at risk, including

approximately 500,000 severe cases and 22,000 deaths, mostly involving children [3]. A. aegypti
is the main vector that transmits dengue and it carries four different virus serotypes of the

genus Flavivirus. Dengue fever is a mild disease; however, prior strain-specific infections may

progress to increased susceptibility to severe dengue hemorrhagic fever and dengue shock
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syndrome [4, 5]. Despite intensive vector control programs, many countries have experienced

dengue reemergence over the last few decades [6, 7]. In 2015, the first dengue vaccine was used

in Mexico, however, the effectiveness of the dengue vaccine must be further investigated and

assessed [8, 9].

Modeling vector-borne diseases is a challenge for many researchers due to complex factors,

including the interplay between vector and host dynamics, spatial or multi-strain, immunity

levels, or vaccination [10, 11]. Mathematical modeling has evolved from simpler models to

more complex models that include climate changes, socio-economic changes, urbanization

and transportation [12, 13]. Particularly, geographic heterogeneity and climate change are

some of the key factors when modeling recurrent vector-borne diseases. The spatio-temporal

dynamics of infectious disease has been studied using partial differential equations and meta-

population models [14, 15]. Human movement plays a significant role on disease reemergence

and persistence [16–18]. There are several approaches to model the effect of human movement

[17] (references are therein). In that work, two different frameworks have been employed: the

Lagrangian framework mimics human commuting behavior, and the Eulerian framework

mimics human migration. A discrete-time multi-patch model was used to study the transmis-

sion dynamics of dengue in multi-locations by incorporating the movement of people between

villages and a city [19]. The impact of commuters between patches are well studied in star net-

works of villages and a city [20], and quantifying the impact of human mobility on the spread

of malaria has also been studied [21]. In these studies, the role of human movement was

highlighted in the vector-born disease spread in multi-locations.

Recurrent dengue outbreaks have been commonly observed in South America and other

areas of the world [12, 22–24]. Many of these regions have shown seasonal patterns that

directly influence the dynamics of dengue transmission [25]. A number of mathematical mod-

els have been developed to understand the complexity of dengue transmission dynamics [11,

26]. It was shown that seasonality plays a major role in the size of the mosquito population,

which influences the decision of effective strategies to control the disease [27, 28]. Several ento-

mological factors are included in the temperature-dependent entomological parameters such

as mortality rates and oviposition rates in a mosquito life-cycle [10]. Recently, ten Bosch et al

carried out extensive studies for the dengue transmission dynamics with multiple strains and

seasonality [29]. They proposed six models by employing a pattern oriented modeling

approach and identified the parameter space so that all proposed models reproduced the

observed patterns of dengue outbreaks. Furthermore, they demonstrated that seasonal forcing

played a key role in their model selection. These studies highlight the importance of seasonality

in the dynamics of dengue transmission.

Therefore, it is critical to incorporate the environmental and seasonal effects into dengue

transmission modeling. As reported in previous research [30], the 2000 dengue outbreaks in

Peru were examined by using a two-patch model where the jungle areas were always endemic,

observing how human movement caused epidemics in the coastal cities. Based on the work in

[30], the transmission dynamics of dengue was investigated in a two-patch model [31]. Two

patches represented two interconnected locations (a jungle/rural area and a city/urban area)

and they were coupled by a residence-time matrix assuming constant transmission rates in

both the host and vector populations. The focus was on the overall transmission dynamics

between patches under different residence-time configurations for a short-time scale (less than

a year). In the present work, we formulate a non-autonomous system to investigate a relatively

longer-term dengue dynamics by incorporating seasonality into the two-patch system. The

effect of seasonality on patch-specific dynamics including the seasonal basic reproduction

number and cumulative incidence is highlighted under various scenarios [32]. We formulate

an optimal control problem in a host-vector population in two-patches. The goal is to identify
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patch-specific strategies that minimize the total number of infected humans and vectors in the

presence of seasonality. The effects of seasonality and residence-time configurations are

explored on patch-specific preventive controls for a longer time scale.

Methods

Two-patch dengue transmission model with seasonality

A two-patch dengue transmission model has been developed for a short time scale (less than

one year) in the absence of seasonality [31]. Since recurrent dengue outbreaks occur in many

tropical and sub-tropical countries [33], it is more realistic to consider seasonality factors for

the long-term dynamics of dengue transmission. For each patch, we add demographics to the

host population and seasonality to the vector population and the transmission rates, as pro-

posed in our baseline model [30]. The variables of the vectors are Sv for the susceptible class,

Ev for the exposed class and Iv for the infected class, with the total vector population Nv � Sv +

Ev + Iv. The variables for the human classes are Sh for the susceptible class, Eh for the exposed

class, Ih for the infected class, and Rh for the recovered class, with Nh� Sh + Eh + Ih + Rh. Since

the dengue fatality rate is below 1% under proper medical cares [34], deaths due to dengue are

assumed to be negligible, that is, the total human population is assumed to be constant. How-

ever, seasonality evidently affects the total population size of the vectors [32, 35–37]. Hence, the

seasonality of the vector population is modeled by a periodic vector birth rate.

The two patches are coupled via a residence-time matrix P = (pij)2×2 for i, j = 1, 2. It is

assumed that the human residence-time matrix is not affected by seasonality, so pij is constant

in [0, 1] satisfying the condition
P2

j¼1
pij ¼ 1 for i = 1, 2. The residence-time matrix can model

the virtual movement of humans between/within patches. More precisely, the coupling param-

eter pij represents the proportion of time that a person residing in patch i visits patch j. Hence,

our model is based on the Lagrangian framework that mimics human commuting behavior

[17]. It is assumed that vectors do not move, that is, only humans can move across patches.

More details of the residence-time matrix are found in the previous work [31]. The two-patch

dengue transmission dynamics is captured by the following patch-specific system of nonlinear

ordinary differential equations:

_Sv1 ¼ mv1ðtÞNv1 � bv1ðtÞðp11Ih1=Nh1 þ p21Ih2=Nh2ÞSv1 � mvSv1

_Ev1 ¼ bv1ðtÞðp11Ih1=Nh1 þ p21Ih2=Nh2ÞSv1 � mvEv1 � kEv1

_I v1 ¼ kEv1 � mvIv1

_Sh1 ¼ mhNh1 � Sh1ðbh1ðtÞp11Iv1=Nv1 þ bh2p12Iv2=Nv2Þ � mhSh1

_Eh1 ¼ Sh1ðbh1ðtÞp11Iv1=Nv1 þ bh2p12Iv2=Nv2Þ � gEh1 � mhEh1

_I h1 ¼ gEh1 � dIh1 � mhIh1

_Rh1 ¼ dIh1 � mhRh1

_Sv2 ¼ mv2ðtÞNv2 � bv2ðtÞðp12Ih1=Nh1 þ p22Ih2=Nh2ÞSv2 � mvSv2

_Ev2 ¼ bv2ðtÞðp12Ih1==Nh1 þ p22Ih2=Nh2ÞSv2 � mvEv2 � kEv2

_I v2 ¼ kEv2 � mvIv2

_Sh2 ¼ mhNh2 � Sh2ðbh1ðtÞp21Iv1=Nv1 þ bh2ðtÞp22Iv2=Nv2Þ � mhSh2

_Eh2 ¼ Sh2ðbh1ðtÞp21Iv1=Nv1 þ bh2ðtÞp22Iv2=Nv2Þ � gEh2 � mhEh2

_I h2 ¼ gEh2 � dIh2 � mhIh2

_Rh2 ¼ dIh2 � mhRh2;

ð1Þ
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where

mv1ðtÞ ¼ mv 1 � ε1 sin
2pt
365

� �� �

; mv2ðtÞ ¼ mv 1 � ε2 sin
2pt
365

� �� �

: ð2Þ

The vector birth rate, μvi is modeled as a sinusoidal function with a distinct amplitude,

which results in the varying vector population size over time (high in the summer and low in

the winter) [32, 37, 38]. Dengue is transmitted through two types of interactions: from hosts to

vectors and from vectors to hosts. Susceptible vectors acquire infections through contact with

infected human individuals at the per-infective and per-capita rate βvi(t). It is also transmitted

when susceptible individuals are infected via contacts with infected vectors at the per-infective

and per-capita rate βhi(t).
The dengue data in Peru from 2001 to 2008 shows recurrent seasonal patterns in Fig 1 (den-

gue cases in the jungle and the coastal city are shown [25]). Dengue is endemic in the jungle,

which is presumed as the driving force of dengue in Peru. In coastal cities, the number of den-

gue cases are very small in the winter due to the low vector population. Hence, we consider the

following two different types of transmission rates, βvi(t) (i = 1, 2) motivated by the work [30].

(S1). Seasonality scenario I

For Patch 1, βv1(t) is assumed to be a constant function to model an endemic situation in

Patch 1. For Patch 2, the transmission rate has a positive value in the summer, describing

that vectors are active and contact hosts, and it is almost zero in the winter, resulting in

no incidence rates between hosts and vectors. Thus, βv2(t) is modeled as a square wave

function, which is frequently used for seasonally varying epidemic models [39, 40].

Patch-specific transmission rate functions are given by

bv1ðtÞ ¼ 0:21;

bv2ðtÞ ¼
0:21; if t 2 ð365 ðn � 1

4
Þ; 365 ðnþ 1

4
ÞÞ for n ¼ 0; 1; 2; � � � ;

0:01; otherwise:
ð3Þ

8
<

:

Fig 1. Weekly number of dengue cases in the jungle and the coast in Peru.

https://doi.org/10.1371/journal.pone.0173673.g001
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(S2). Seasonality scenario II

In both patches, βv1(t) and βv2(t) are sinusoidal type functions with two distinct ampli-

tudes (higher in Patch 1 than Patch 2). The transmission rate in Patch 1 oscillates

throughout the year but never goes to zero, in contrast to the one in Patch 2, which is

almost zero in the winter [32, 40–42]. atch-specific transmission rate functions are given

by

bv1ðtÞ ¼ 0:07 cos
2pt
365
þ 1

� �

þ 0:1;

bv2ðtÞ ¼
0:21 cos 2pt

365
þ 0:04; if t 2 365 n � 1

4

� �
; 365 nþ 1

4

� �� �
for n ¼ 0; 1; 2; � � � ;

0:01; otherwise:
ð4Þ

8
<

:

Also, the patch-specific transmission rates from vectors to hosts are defined as βhi(t) =

mi(t)βvi(t), where mi(t) = Nvi(t)/Nhi is the ratio of vector to host [43, 44]. It is assumed that the

average vector population size is approximately twice of the human population size (
Nvi
Nhi
� 2)

[45].

Note that these parameters (μvi(t), βvi(t), βhi(t)) are seasonally varying time-dependent (see

Fig A in S1 Appendix). The annual oscillations in dengue incidence are caused by complex fac-

tors including the seasonality of the vector population and the transmission rates. It is well

known that temperature and precipitation play a key role in the seasonal patterns of dengue

incidence [32, 46–48]. In general, these parameters increase as temperature or precipitation

increases to a certain extent. In our work, we assumed that temperature and precipitation in a

jungle/rural area (one patch) are greater than a city/urban area (the other patch). Also, this

holds for any two locations with one higher than the other. It has been studied in the previous

work when the climate in two locations is similar [31].

The system of nonlinear ordinary differential equations is non-autonomous with periodic

forcing terms μvi(t), βvi(t) and βhi(t) for a 1-year period. Numerical simulations show that the

system has an asymptotically stable limit cycle, which is a forced-period solution of period

1-year (See Fig B in S1 Appendix). Since recurrent epidemics are considered here, the focus is

on the dynamics of periodic solutions, which is independent of the initial values. Descriptions

of the parameters are given in Tables 1 and 2.

Optimal controls in two-patch dengue transmission model

More recently, optimal control theory has been successfully employed in many biological

and epidemiological models [52–54]. Optimal control problems have been formulated to

identify optimal strategies and study the impact of control measures for vector-borne diseases

[55, 56]. In this section, we formulate an optimal control problem in order to implement

effective patch-specific control measures that take into account different coupling and sea-

sonality cases. The two-patch dengue model is modified by incorporating the patch-specific

control functions (1 − ui(t)) into the incidence rates at which humans and vectors get infected

for patch i (i = 1, 2) in Eq (1). Preventive control efforts may involve the application of

Table 1. Parameter values in a residence-time matrix.

Coupling intensity Weak coupling Strong coupling

Symmetric coupling p11 = 0.99 p12 = 0.01 p21 = 0.01 p22 =

0.99

p11 = 0.7 p12 = 0.3 p21 = 0.3 p22 = 0.7

Asymmetric

coupling

p11 = 0.9 p12 = 0.1 p21 = 0.001 p22 =

0.999

p11 = 0.7 p12 = 0.3 p21 = 0.001 p22 =

0.999

https://doi.org/10.1371/journal.pone.0173673.t001
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pesticide (sprays), mosquito repellents, reduction of the impact of vector breeding grounds,

or the results of education campaigns, which increase personal protection. It is assumed that

these preventive interventions do not reduce the total vector population significantly, and the

effect of these interventions implicitly translates in reductions of transmission between vec-

tors and hosts per unit time. In particular, incidence rates including controls are modified as

bvið1 � uiðtÞÞSvi

P2

j¼1
pjiIhj and Shi

P2

j¼1
bhjð1 � ujðtÞÞpijIvj for i = 1, 2. The controlled two-

patch system is given as

_Sv1 ¼ mv1ðtÞNv1 � bv1ðtÞð1 � u1ðtÞÞðp11Ih1=Nh1 þ p21Ih2=Nh2ÞSv1 � mvSv1

_Ev1 ¼ bv1ðtÞð1 � u1ðtÞÞðp11Ih1=Nh1 þ p21Ih2=Nh2ÞSv1 � mvEv1 � kEv1

_I v1 ¼ kEv1 � mvIv1

_Sh1 ¼ mhNh1 � Sh1ðbh1ðtÞð1 � u1ðtÞÞp11Iv1=Nv1 þ bh2ðtÞð1 � u2ðtÞÞp12Iv2=Nv2Þ � mhSh1

_Eh1 ¼ Sh1ðbh1ðtÞð1 � u1ðtÞÞp11Iv1=Nv1 þ bh2ðtÞð1 � u2ðtÞÞp12Iv2=Nv2Þ � gEh1 � mhEh1

_I h1 ¼ gEh1 � dIh1 � mhIh1

_Rh1 ¼ dIh1 � mhRh1

_Sv2 ¼ mv2ðtÞNv2 � bv2ðtÞð1 � u2ðtÞÞðp12Ih1=Nh1 þ p22Ih2=Nh2ÞSv2 � mvSv2

_Ev2 ¼ bv2ðtÞð1 � u2ðtÞÞðp12Ih1==Nh1 þ p22Ih2=Nh2ÞSv2 � mvEv2 � kEv2

_I v2 ¼ kEv2 � mvIv2

_Sh2 ¼ mhNh2 � Sh2ðbh1ðtÞð1 � u1ðtÞÞp21Iv1=Nv1 þ bh2ðtÞð1 � u2ðtÞÞp22Iv2=Nv2Þ � mhSh2

_Eh2 ¼ Sh2ðbh1ðtÞð1 � u1ðtÞÞp21Iv1=Nv1 þ bh2ðtÞð1 � u2ðtÞÞp22Iv2=Nv2Þ � gEh2 � mhEh2

_I h2 ¼ gEh2 � dIh2 � mhIh2

_Rh2 ¼ dIh2 � mhRh2:

ð5Þ

Table 2. Definitions and baseline values of parameters used in numerical simulations.

Parameters Description Value Ref

pij Proportion of time for hosts visiting patch j from patch i 0–1 [31]

γ Progression rate from latent to infectious for host (days−1) 1/5.5 [45]

κ Progression rate from latent to infectious for vector (days−1) 1/12 [45]

δ Recovery rate (days−1) for infectious class for host (days−1) 1/5.0 [45]

ε1 Amplitude of oscillations in vector birth rate in Patch 1 0, 0.1 [49–51]

ε2 Amplitude of oscillations in vector birth rate in Patch 2 0.2 [49–51]

μh Host birth/death rate (days−1) 1/(65 * 365) [45]

μv Average vector birth/death rate (days−1) 1/14 [45]

Nhi Total number of hosts in patch i 100000 Assumption

Nvi Total number of vectors in patch i ** [45]

μvi Vector birth rate in patch i (days−1) ** [49–51]

mi Number of vectors per host in patch i ** [43, 44]

βvi Transmission rate from host to vector in patch i (days−1) ** [43]

βhi Transmission rate from vector to host in patch i (days−1) ** [43, 44]

b The upper bound of control (efficient reduction rates, days−1) 0.35

Wi Weight constants on controls i = 3, 4 5000, 10000, 50000

(** denotes the time-dependent parameters)

https://doi.org/10.1371/journal.pone.0173673.t002

Assessment of optimal strategies in a two-patch dengue transmission model with seasonality

PLOS ONE | https://doi.org/10.1371/journal.pone.0173673 March 16, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0173673.t002
https://doi.org/10.1371/journal.pone.0173673


Patch-specific optimal controls are obtained by minimizing the number of both infected

hosts and vectors and the cost of implementation strategies over a finite time interval. The

objective functional to be minimized is defined as

Jðu1ðtÞ; u2ðtÞÞ ¼
Z tf

0

W1ðIh1ðtÞ þ Iv1ðtÞÞ þW2ðIh2ðtÞ þ Iv2ðtÞÞ þ
1

2
W3u

2

1
ðtÞ þ

1

2
W4u

2

2
ðtÞdt; ð6Þ

where W1 and W2 are weight constants on the infected hosts and vectors for Patch 1 and Patch

2, respectively. Weight constants, W3 and W4 are the relative costs of the implementation of

the preventive controls for Patch 1 and Patch 2, respectively. We model the control efforts as a

linear combination of quadratic terms, u2
i ðtÞ (i = 1, 2) due to the convexity of the controls in

the objective functional. Then, we seek an optimal pair (U�, X�) such that

JðU�Þ ¼ minfJðUÞjU 2 Og; ð7Þ

where O = {(u1(t), u2(t)) 2 (L1(0, tf))2 k a� ui(t)� b, t 2 [0, tf], i = 1, 2} subject to the state sys-

tem Eq (5) with X = (Sv1, Ev1, Iv1, Sh1, Eh1, Ih1, Rh1, Sv2, Ev2, Iv2, Sh2, Eh2, Ih2, Rh2) and U = (u1,

u2). The existence of optimal controls is guaranteed from standard results on optimal control

theory [57]. Pontryagin’s Maximum Principle is used to establish necessary conditions that

must be satisfied by an optimal solution [58]. Derivations of the necessary conditions are

shown in Section C in S1 Appendix.

Simulation results

In this section, we present the two-patch dengue transmission dynamics in the absence of con-

trols and in the presence of controls. The roles of a residence-time matrix and seasonality are

investigated. More specifically, the residence-time matrix configurations include the coupling

intensity and the mobility patterns. For instance, weak coupling implies that most humans

stay in their own patch while strong coupling implies that certain proportions of humans visit

the other patch. Mobility patterns represent the symmetry of human movement between the

two patches. For example, if the proportion of humans visiting from patch i to patch j is the

same as for patch j to patch i, then it is symmetric. Asymmetric mobility implies that the time

spent for each proportion becomes more asymmetric. For the asymmetric mobility pattern, we

assume that more humans from the jungle/rural area (Patch 1) visit the city/urban area (Patch

2) than the other way around.

We first focus on the case when the two patches have the similar population size (Nh1 = Nh2).

Then, we will discuss the impact of different subpopulation sizes later. The population size of

the coastal area is about twice as the population size of the jungle area in Peru [59], hence we

consider the second case of Nh1 < Nh2 with Nh2 = 2Nh1.

Two-patch dengue transmission dynamics in the absence of controls

The seasonal reproduction number. The basic reproduction number R0 is the average

number of secondary infectious cases when one infectious individual is introduced into a

whole susceptible population. It can be calculated as the dominant eigenvalue of the next gen-

eration matrix for an autonomous system [60]. However, due to several time-dependent

parameters in our system, the basic reproduction number varies in time. Therefore, the sea-

sonal reproduction number Rs is computed by the same procedure as for time-dependent

parameters [32, 61].

Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg

2C
ð�1 þ

ffiffiffiffiffi
�2

p
Þ

r

ð8Þ
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where

�1 ¼ B1 þ B2

�2 ¼ B3ðA1 þ A2 þ A3Þ:

C ¼ mv kþ mvð Þ gþ mhð Þ dþ mhð Þ

B1 ¼ ðbh1bv1p2
11
Sh1Sv1Þ=ðNh1Nv1Þ þ ðbh1bv1p2

21
Sh2Sv1Þ=ðNh2Nv1Þ

B2 ¼ ðbh2bv2p2
12
Sh1Sv2Þ=ðNh1Nv2Þ þ ðbh2bv2p2

22
Sh2Sv2Þ=ðNh2Nv2Þ

B3 ¼ 1=ðN2
h1
N2

h2
N2

v1
N2

v2
Þ

A1 ¼ b
2

h1
b

2

v1
N2

v2
ðNh2p2

11
Sh1 þ Nh1p2

21
Sh2Þ

2S2
v1

A2 ¼ 2bh1bh2bv1bv2Nv1Nv2ðN2
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More details of the calculation of Rs are given in Section B in S1 Appendix. In Fig C in S1

Appendix, the time series of the global seasonal reproduction number Rs and human inci-

dence are displayed for symmetric coupling. The incidence of Patch 2 increases when Rs > 1

and decreases when Rs < 1. The time series of Rs follows βv2(t) rather than βv1(t). This implies

that the global seasonal reproduction number is more sensitive to βv2(t).
The effects of residence-time matrix configurations and seasonality scenarios. First,

the impacts of a residence-time matrix and seasonality scenarios are presented on patch-spe-

cific incidences. Fig 2 shows the results under different coupling intensities using symmetric

mobility: weakly coupled (left panel) and strongly coupled (right panel). As coupling becomes

stronger, the peak sizes of both patches become more similar. This can be interpreted as the

population from different patches being well mixed, and so the dynamics of each patch

become similar. Fig 3 presents the effects of mobility patterns: symmetric coupling (p12 = p21 on

the left) and asymmetric coupling (p12 > p21 on the right). The peak sizes in both patches

become higher as the coupling becomes more asymmetric, that is, the proportion of humans

visiting the city from the jungle becomes larger. The effect of seasonality scenarios is presented

in Fig D in S1 Appendix using symmetric mobility. This figure shows slightly stronger syn-

chronization between two patches under the sinusoidal type scenario (S2) than for under the

square wave type scenario (S1). The qualitative behaviors in both patches are not significantly

sensitive to the seasonality scenario.

Cumulative incidence. The final epidemic size is one of the most important epidemiolog-

ical quantities for the standard SIR model with a constant transmission in the absence of the

demographic effect [62]. For seasonally varying epidemic models, cumulative incidence (CI)

for a finite time interval can be computed instead of the final epidemic size [41, 42]. Through-

out our manuscript, the cumulative incidence is computed as
R 365

0
kEhiðtÞdt for a one-year

period. We present the effects of various coupling and seasonality scenarios on CI in Fig 4.

Cumulative incidence in Patch 1 is always larger than that in Patch 2, even though peak sizes

in Patch 2 are higher than for Patch 1 (see Figs 2 and 3). This is due to the fact that the vector

population remains constantly high in the endemic region. It is also observed that the dynam-

ics in Patch 2 is more sensitive to residence-time configurations since people tend to move

from the jungle to the city (Patch 2 has a higher density).

The impact of different residence-time configurations on cumulative incidence is shown in

Fig E of S1 Appendix. Clearly, CI on Patch 1 decreases as p12 increases in a linear fashion, that
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Fig 2. The effect of coupling strength on patch-specific incidence. (A) Strong coupling (p12 = p21 = 0.3) and (B) weak coupling (p12 =

p21 = 0.01) for the case of symmetric coupling and the sinusoidal type seasonality (S2).

https://doi.org/10.1371/journal.pone.0173673.g002

Fig 3. The effect of symmetry of movement on patch-specific incidence. (A) Symmetric coupling (p12 = p21 = 0.3) and (B) asymmetric

coupling (p12 = 0.3 and p21 = 0.001) for the case of strong coupling and the square-wave type seasonality (S1).

https://doi.org/10.1371/journal.pone.0173673.g003
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is, as more people from Patch 1 visit Patch 2. However, CI on Patch 2 becomes more complex

as p12 increases. For the case when p21 is small (p21� 0.2), CI on Patch 2 increases as p12 gets

larger. On the other hand, when there is more visiting from Patch 2 to Patch 1, then CI on

Patch 2 decreases even for a lager value of p12. Overall CI (Patch 1 + Patch 2) shows a similar

tendency as that for CI on Patch 1, that is, an increase in visiting from Patch 1 to Patch 2

makes CI smaller, while the opposite is true for more people visiting from Patch 2 to Patch 1.

Moreover, we have carried out sensitivity analysis for seasonality parameters, εi, μv, βv and βh,

and the effects of these parameters on CI are shown in Fig I of S1 Appendix.

Controlled two-patch dengue transmission dynamics

We present the two-patch dengue transmission dynamics in the presence of optimal controls.

Numerical solutions to Eq (7) are obtained by the standard scheme (a two point boundary

Fig 4. The effect of seasonality and coupling scenarios on patch-specific cumulative incidence for one year. #1–#4: Square-wave

type seasonality (S1), #5–#8: Sinusoidal type seasonality (S2); #1, #5: p12 = 0.01, p21 = 0.01 (weak / symmetric); #2, #6: p12 = 0.1, p21 =

0.001 (weak / asymmetric); #3, #7: p12 = 0.3, p21 = 0.3 (strong / symmetric); #4, #8: p12 = 0.3, p21 = 0.001 (strong / asymmetric).

https://doi.org/10.1371/journal.pone.0173673.g004
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method [52]), which is employed as follows. First, the state system Eq (5) is solved forward in

time with initial conditions and an initial guess for the control. Second, the adjoint system

with transversality conditions is solved backward in time. Third, the optimality condition is

updated. These three steps are iterated until convergence is achieved. There are some critical

control parameter values that affect optimal solutions greatly such as weight constants and a

simulation time duration. For the weight constants, W1 = W2 = 1 and W3 = W4 = 10000 are

used throughout the simulations and two different simulation time durations (three and six

years) are used. Parameter values are given in Tables 1 and 2.

The effect of coupling and seasonality scenarios. We consider three distinct control

strategies: (1) both patches, (2) only Patch 1 and (3) only Patch 2. First, the impact of coupling

intensity is explored under the same coupling symmetry and seasonality. Fig 5 shows human

incidence and optimal controls for p12 = 0.1, p21 = 0.001 (weak) and p12 = 0.3, p21 = 0.001

(strong) using S1 (asymmetric mobility). Obviously, applying control strategies to both patches

gives the greatest incidence reduction, but it is worth noting that controlling only Patch 1 is as

effective as controlling both patches under weak coupling. This is in contrast to strong cou-

pling, where controlling only Patch 2 is more effective than controlling Patch 1. This can be

interpreted such that when mobility between the two patches is relatively small, it is effective

to control the endemic region (Patch 1). While the residents in two patches are well mixed due

to higher mobility, targeting the region where the population density is higher (Patch 2) is

optimal. For symmetric mobility, the results are not significantly sensitive to coupling inten-

sity; for weak or strong coupling, focusing on Patch 1 is as effective as controlling both patches.

The effectiveness of the controls becomes higher as coupling is weaker (i.e., most people stay

in their own patch).

The impact of the mobility pattern on the controlled dynamics is investigated in Fig 6.

Results are compared for p12 = 0.3, p21 = 0.3 (symmetric) and p12 = 0.3, p21 = 0.001 (asymmet-

ric) using S2. Again, controlling both patches shows the greatest incidence reduction in both

patches. For symmetric coupling, applying control strategies for only Patch 1 (endemic area) is

more effective than controlling for only on Patch 2 due to the fact that there is a higher rate of

movement between the patches and almost identical human densities on both patches. For

asymmetric coupling, there are more people from Patch 1 visiting Patch 2 than from Patch 2

to Patch 1, hence, controlling only Patch 2 (higher density) is more effective. Next, we com-

pared the results with two distinct seasonality scenarios, S1 (a square-wave type) and S2 (a sinu-

soidal type), under the same coupling strength and symmetry mobility. Fig F in S1 Appendix

shows human incidence and controls for (S1) and (S2) using p12 = 0.1 and p21 = 0.001. Patch 1

is more sensitive to the change of seasonality scenario than Patch 2 due to a bigger change of

βv1 than βv2. Our results show that the seasonality scenario does not significantly affect the

qualitative behavior of the dynamics. The controlled dynamics is more sensitive to coupling

scenarios than the seasonality scenario.

Regardless of all residence-time configurations or seasonality scenarios, in general, (the

overall profiles of controls) intensive controls should be given at the first year in both patches.

Moreover, due to the endemicity of Patch 1, it turns out that continuous control in a decreas-

ing manner during the entire time duration is necessary in Patch 1. However, for Patch 2,

intermittent control is more effective, that is, control should be concentrated during the sum-

mer (right before the outbreak) due to seasonal patterns in Patch 2. If there are sufficient

resources available, control measures can be applied to both patches, and if resources are not

sufficient, it is better to directly target the location of interest. Therefore, under limited

resources available, it becomes more critical to take into consideration the residence-time con-

figurations and seasonality scenarios when public health officials make a decision on which

area should be targeted.
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Fig 5. The effect of coupling intensity on patch-specific incidence and optimal control functions. (A)-

(D) Weak coupling (p12 = 0.1, p21 = 0.001) and (E)-(H) strong coupling (p12 = 0.3, p21 = 0.001) for the case of

asymmetric coupling and the sinusoidal type seasonality (S2).

https://doi.org/10.1371/journal.pone.0173673.g005
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Fig 6. The effect of symmetry of movement on patch-specific incidence and optimal control

functions. (A)-(D) Symmetric movement (p12 = p21 = 0.3) and (E)-(H) asymmetric movement (p12 = 0.3, p21 =

0.001) for the case of strong coupling and the sinusoidal type seasonality (S2).

https://doi.org/10.1371/journal.pone.0173673.g006
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The effects of duration and weight constants. In the previous section, all results are com-

puted under a simulation duration of three years. The simulation duration is doubled to six

years to investigate the effect of time duration on the two-patch controlled dynamics. Fig 7 dis-

plays the human incidence and optimal controls under three years and six years using p12 =

0.3, p21 = 0.001. Putting controls in both patches is expected to best reduce the incidences. For

the case of limited resources available, controlling only Patch 2 is sufficiently effective to

reduce dengue incidence on both patches as we observed in the three year duration case. Next,

Fig 8 shows cumulative incidence for each patch, when both patches are controlled for three

years and six years, which are compared with CI without control. It is observed that under the

duration of six years, cumulative incidence has been reduced significantly. The weight con-

stant can be considered as the relative cost of control implementation, and a larger value repre-

sents a relatively higher cost. The impact of control weight constants is illustrated under

several values of weight constants. Fig G in S1 Appendix shows human incidence and optimal

controls using W3 = W4 = 5000, 10000, 50000 (W3 = W4 = 10000 is taken as the baseline value,

which is used throughout this paper). Obviously, the impact is straightforward; for higher

costs, the control decreases, which leads to larger incidences.

The impact of different subpopulation sizes. In the previous sections, we have focused

on the effect of coupling and seasonality scenarios when each patch has the same host popula-

tion size. Here we have investigated the impact of different patch-sizes of human individuals

by comparing the results of two scenarios (Case 1: Nh1 = Nh2 and Case 2: Nh1 < Nh2 with Nh2 =

2Nh1). Patch-specific incidences are illustrated in Fig H in S1 Appendix. As Nh2 is doubled,

Patch 1 incidence barely changes, but Patch 2 incidence increases almost twice. Patch-specific

incidences and controls are presented in Fig 9. As the population size of Patch 2 becomes

larger, Patch 2 incidence increases, hence, control efforts increase in both patches. Note that

more intensive efforts should be implemented in Patch 2. The effect of coupling scenarios on

the results of Case 2 remains qualitatively similar as the ones of Case 1.

Discussions

We have investigated the dynamics of dengue transmission in a seasonally varying two-patch

dengue system. It is assumed that the two patches represent two locations that have a constant

and well-defined visiting relationship modeled by a residence-time matrix. Motivated by the

recurrent dengue outbreaks in Peru, host demographics and seasonality have been included in

the previous model [31]. We assumed that one patch is endemic (jungle/rural areas), and we

modeled how human visiting between the two patches caused epidemics in the other patch

(coast/urban areas) [30]. The effects of two distinct seasonality scenarios have been investi-

gated under different residence-time configurations. Stronger synchronization occurs for the

sinusoidal type transmission rate function than for the square-wave type. Regardless of resi-

dence-time configurations or seasonality, the dengue dynamics in both patches become similar

as coupling strength becomes stronger. Also, human incidences in both patches have higher

peaks as the residence-time matrix becomes more asymmetric regardless of seasonality. The

seasonal reproduction number and cumulative incidence are investigated under various sce-

narios. Overall cumulative incidence increases as coupling intensity becomes stronger for both

the symmetric and asymmetric cases. However, overall cumulative incidence decreases as p12

increases, that is, more people visit the city from the jungle.

We developed an optimal control framework to identify optimal patch-specific control

strategies under various scenarios. First, we identify optimal strategies and compare the con-

trolled dynamics with the results in the absence of controls. Our results indicate that, as

expected, controlling the two patches simultaneously gives the best reduction in dengue
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Fig 7. The effect of control duration on patch-specific incidence and optimal control functions. (A)-(D)

Duration of three years and (E)-(H) duration of six years for the case of strong and asymmetric coupling (p12 =

0.3, p21 = 0.001) with the sinusoidal type seasonality (S2).

https://doi.org/10.1371/journal.pone.0173673.g007
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prevalence. However, for the case when only one patch can be controlled due to limited

resources, the resulting control strategies become more sensitive to residence-time configura-

tions. For instance, focusing on Patch 1 (the endemic area) is turned out to be optimal under

weak coupling or symmetric mobility patterns. However, focusing only on Patch 2 (the city

with higher human density) is more effective under strong coupling with asymmetric mobility

patterns. Moreover, the results of optimal problems are sensitive to the subpopulation sizes. As

the population size of Patch 2 is increased, more intensive control efforts should be imple-

mented in both patches.

Even though our work is motivated by dengue incidence in Peru, we aim to build a general

model that can provide an experimental tool for any two interconnected locations with well

defined commuting or visiting relationships. Human mobility patterns are one of critical fac-

tors for dengue transmission dynamics, however, we rather use a residence-time matrix to cap-

ture the effect of virtual human movements due to the lack of real commuting data.

Dengue fever is a challenge for vector control and education program, even with the joint

efforts of government and community, and the potential use of partially effective vaccines at

the population level. More advanced mathematical modeling should involve vector and host

interactions, dynamics of circulating dengue serotypes, and geographical and demographical/

behavioral factors for both vector and host. Hence, understanding the mechanism behind the

complex spatial-temporal dynamics of dengue disease requires multidisciplinary and transdis-

ciplinary efforts.

Identification and evaluation of optimal strategies that minimize the spread of dengue have

been explored through the use of mathematical models. The work presented here can model

the dengue transmission dynamics in two seasonally varying locations that are geographically

close and similar in population size. Our results show the challenges that public health officials

face in how resources should be allocated in heterogeneous environments. Our findings sug-

gest that public health officials should focus on combating dengue in the area with a higher

Fig 8. Cumulative incidence for one year under different control duration. When both patches are controlled for (A) three years and (B)

six years, cumulative incidence for one year is compared with cumulative incidence for one year without control (displayed on time 0) using

p12 = 0.1, p21 = 0.001 and the sinusoidal type seasonality (S2).

https://doi.org/10.1371/journal.pone.0173673.g008
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Fig 9. The effect of different patch sizes on patch-specific incidence and optimal controls. (A)-(D)

Nh1 = Nh2 = 105 and (E)-(H) Nh1 = 105, Nh2 = 2Nh1 for the case of asymmetric and weak coupling (p12 = 0.1,

p21 = 0.001) with the sinusoidal type seasonality (S2). Control efforts increase in both patches due to the

increment of Nh2 in (E)-(H). More intensive efforts should be implemented in Patch 2 (H).

https://doi.org/10.1371/journal.pone.0173673.g009
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population density (cities) or in the region with a higher transmission rate where dengue is

endemic, depending on the residence-time configurations and the amount of available

resources.
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