829 research outputs found
A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment
A honeycomb detector consisting of a matrix of 96 closely packed hexagonal
cells, each working as a proportional counter with a wire readout, was
fabricated and tested at the CERN PS. The cell depth and the radial dimensions
of the cell were small, in the range of 5-10 mm. The appropriate cell design
was arrived at using GARFIELD simulations. Two geometries are described
illustrating the effect of field shaping. The charged particle detection
efficiency and the preshower characteristics have been studied using pion and
electron beams. Average charged particle detection efficiency was found to be
98%, which is almost uniform within the cell volume and also within the array.
The preshower data show that the transverse size of the shower is in close
agreement with the results of simulations for a range of energies and converter
thicknesses.Comment: To be published in NIM
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios
The effect of the final state Coulomb interaction on particles produced in
Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment
through the study of the pi-/pi+ and K-/K+ ratios measured as a function of
transverse mass. While the ratio for kaons shows no significant transverse mass
dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with
an enhancement that increases with centrality. A silicon pad detector located
near the target is used to estimate the contribution of hyperon decays to the
pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in
which the Coulomb interaction has been incorporated allows to place constraints
on the time of the pion freeze-out.Comment: 9 pages, 12 figure
Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions
Neutral pion transverse momentum spectra were measured in p+C and p+Pb
collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over
the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra
measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment.
For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with
p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled
with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb
collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
- …