401 research outputs found

    Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method

    Get PDF
    Collisions of low energy electrons with molecules are important for understanding many aspects of the environment and technologies. Understanding the processes that occur in these types of collisions can give insights into plasma etching processes, edge effects in fusion plasmas, radiation damage to biological tissues and more. A radical update of the previous expert system for computing observables relevant to these processes, Quantemol-N, is presented. The new Quantemol Electron Collision (QEC) expert system simplifyies the user experience, improving reliability and implements new features. The QEC graphical user interface (GUI) interfaces the Molpro quantum chemistry package for molecular target setups, and the sophisticated UKRmol+ codes to generate accurate and reliable cross-sections. These include elastic cross-sections, super elastic cross-sections between excited states, electron impact dissociation, scattering reaction rates, dissociative electron attachment, differential cross-sections, momentum transfer cross-sections, ionization cross sections, and high energy electron scattering cross-sections. With this new interface we will be implementing dissociative recombination estimations, vibrational excitations for neutrals and ions, and effective core potentials in the near future

    Assessing feasibility and acceptability of web-based enhanced relapse prevention for bipolar disorder (ERPonline): a randomized controlled trial

    Get PDF
    Background: Interventions that teach people with Bipolar Disorder (BD) to recognise and respond to early warning signs of relapse are NICE recommended but implementation in clinical practice is poor. Objective: This study tests the feasibility and acceptability of a randomised controlled trial to evaluate an online enhanced relapse prevention intervention (ERPonline), and reports preliminary evidence of effectiveness. Methods: Single blind, parallel primarily online randomised controlled trial (n=96) over 48 weeks comparing ERPonline plus usual treatment to waitlist (WL) control plus usual treatment for people with BD recruited through National Health Services, voluntary organisations, and media. Randomisation was independent, minimised on number of previous episodes (<8,8-20,21+). Primary outcomes were feasibility and acceptability assessed by rates of study recruitment and retention, levels of intervention use, adverse events and participant feedback. Process and clinical outcomes were assessed by telephone and online and compared using linear models with intention-to-treat analysis. Results: Two hundred and eighty people registered interest online, from which ninety-six met inclusion criteria, consented and were randomised (49 to WL, 47 to ERPonline) over seventeen months, with 80% retention in telephone and online follow up, except week 48 online (76%). Acceptability was high for both ERPonline and trial methods. ERPonline cost approximately ÂŁ19,340 to create, and ÂŁ2176 per year to host and maintain the site. Qualitative data highlighted the importance of the relationship users have with online interventions and how this is created as an extension of the relationship with the humans perceived as offering and supporting its use. Differences between the group means suggested that access to ERPonline was associated with: a more positive model of bipolar disorder at 24 (10.70 (0.90-20.5 95%CIs)) and 48 weeks (13.1 (2.44-23.93 95%CIs)); increased monitoring of early warning signs of depression at 48 weeks (-1.39 (-2.61, -.163 95%CIs)) and of (hypo)mania at 24 (-1.72 (-2.98, -0.47 95%CIs)) and 48 weeks (-1.61 (-2.92, -0.30 95%CIs)), compared to WL. There was no evidence of impact of ERPonline on clinical outcomes or medication adherence, but relapse rates across both arms were very low (15%) and the sample remained high functioning throughout. One person died by suicide prior to randomisation. Five people in ERPonline and six in WL control reported ideas of suicide or self-harm during the study. None were deemed study related by an independent Trial Steering Committee. Conclusions: ERPonline offers a cheap accessible option for people seeking ongoing support following successful treatment. However, given high functioning and low relapse rates in this study, testing clinical effectiveness for this population would require very large sample sizes. Building in human support to use ERPonline should be considere

    Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)

    Get PDF
    Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 ΌM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 ΌM) and NTPDase3 (Ki 2.22 ΌM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 ΌM)

    A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction

    Get PDF
    A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of  ΌA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis–Menten constants (Km) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2-4-disulfonic acid (PPADS), suramin, and N6-diethyl-ÎČ,Îł-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of ÎČ-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible ÎČ-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model

    Get PDF
    BACKGROUND: ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. METHODS: To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. RESULTS: C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p < 0.05) when compared with the rats injected only with gliomas or with gliomas plus inactivated apyrase. According to the pathological analysis, the malignant gliomas induced by C6 injection and co-injected with apyrase presented a significant reduction in the mitotic index and other histological characteristics that indicate a less invasive/proliferative tumor. Reduction of proliferation induced by apyrase co-injection was confirmed by counting the percentage of Ki67 positive glioma cell nuclei. According to counts with CD31, vessel density and neoformation was higher in the C6 group 20 days after implantation. Confirming this observation, rats treated with apyrase presented less VEGF staining in comparison to the control group. CONCLUSION: These results indicate that the participation of extracellular ATP and the ecto-nucleotidases may be associated with the development of this type of brain tumor in an in vivo glioma model

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    Get PDF
    © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources

    Detection of Hepatocyte Growth Factor (HGF) Ligand-c-MET Receptor Activation in Formalin-Fixed Paraffin Embedded Specimens by a Novel Proximity Assay

    Get PDF
    Aberrant activation of membrane receptors frequently occurs in human carcinomas. Detection of phosphorylated receptors is commonly used as an indicator of receptor activation in formalin-fixed paraffin embedded (FFPE) tumor specimens. FFPE is a standard method of specimen preparation used in the histological analysis of solid tumors. Due to variability in FFPE preparations and the labile nature of protein phosphorylation, measurements of phospho-proteins are unreliable and create ambiguities in clinical interpretation. Here, we describe an alternative, novel approach to measure receptor activation by detecting and quantifying ligand-receptor complexes in FFPE specimens. We used hepatocyte growth factor (HGF)-c-MET as our model ligand-receptor system. HGF is the only known ligand of the c-MET tyrosine kinase receptor and HGF binding triggers c-MET phosphorylation. Novel antibody proximity-based assays were developed and used to detect and quantify total c-MET, total HGF, and HGF-c-MET ligand-receptor interactions in FFPE cell line and tumor tissue. In glioma cells, autocrine activation of c-MET by HGF-c-MET increased basal levels of c-MET phosphorylation at tyrosine (Tyr) 1003. Furthermore, HGF-c-MET activation in glioma cell lines was verified by Surface Protein-Protein Interaction by Crosslinking ELISA (SPPICE) assay in corresponding soluble cell lysates. Finally, we profiled levels o

    CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why?

    Get PDF
    Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains
    • 

    corecore