51 research outputs found
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Operation and performance of the ATLAS Tile Calorimeter in Run 1
The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report
Molecular-Dynamic Calculation of Effects Appearing in Removing a Lead Film from Graphene
Deep phenotyping of 34,128 patients hospitalised with COVID-19 and a comparison with 81,596 influenza patients in America, Europe and Asia: an international network study.
Background In this study we phenotyped individuals hospitalised with coronavirus disease 2019 (COVID-19) in depth, summarising entire medical histories, including medications, as captured in routinely collected data drawn from databases across three continents. We then compared individuals hospitalised with COVID-19 to those previously hospitalised with influenza. Methods We report demographics, previously recorded conditions and medication use of patients hospitalised with COVID-19 in the US (Columbia University Irving Medical Center [CUIMC], Premier Healthcare Database [PHD], UCHealth System Health Data Compass Database [UC HDC], and the Department of Veterans Affairs [VA OMOP]), in South Korea (Health Insurance Review & Assessment [HIRA]), and Spain (The Information System for Research in Primary Care [SIDIAP] and HM Hospitales [HM]). These patients were then compared with patients hospitalised with influenza in 2014-19. Results 34,128 (US: 8,362, South Korea: 7,341, Spain: 18,425) individuals hospitalised with COVID-19 were included. Between 4,811 (HM) and 11,643 (CUIMC) unique aggregate characteristics were extracted per patient, with all summarised in an accompanying interactive website (http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/). Patients were majority male in the US (CUIMC: 52%, PHD: 52%, UC HDC: 54%, VA OMOP: 94%,) and Spain (SIDIAP: 54%, HM: 60%), but were predominantly female in South Korea (HIRA: 60%). Age profiles varied across data sources. Prevalence of asthma ranged from 4% to 15%, diabetes from 13% to 43%, and hypertensive disorder from 24% to 70% across data sources. Between 14% and 33% were taking drugs acting on the renin-angiotensin system in the 30 days prior to hospitalisation. Compared to 81,596 individuals hospitalised with influenza in 2014-19, patients admitted with COVID-19 were more typically male, younger, and healthier, with fewer comorbidities and lower medication use. Conclusions We provide a detailed characterisation of patients hospitalised with COVID-19. Protecting groups known to be vulnerable to influenza is a useful starting point to minimize the number of hospital admissions needed for COVID-19. However, such strategies will also likely need to be broadened so as to reflect the particular characteristics of individuals hospitalised with COVID-19
Tilt Observations in the Normal Mode Frequency Band at the Geodynamic Observatory Cueva de los Verdes, Lanzarote
Long-term live cells observation of internalized fluorescent Fe@C nanoparticles in constant magnetic field
Soft tissue modelling through autowaves for surgery simulation
Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients
Comprehensive Analysis of Deafness Genes in Families with Autosomal Recessive Nonsyndromic Hearing Loss
- …
