1,370 research outputs found
Aberrant phenotype in human endothelial cells of diabetic origin: Implications for saphenous vein graft failure?
Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein-(SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (30%) and angiogenesis (40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
Self-force: Computational Strategies
Building on substantial foundational progress in understanding the effect of
a small body's self-field on its own motion, the past 15 years has seen the
emergence of several strategies for explicitly computing self-field corrections
to the equations of motion of a small, point-like charge. These approaches
broadly fall into three categories: (i) mode-sum regularization, (ii) effective
source approaches and (iii) worldline convolution methods. This paper reviews
the various approaches and gives details of how each one is implemented in
practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in
"Equations of Motion in Relativistic Gravity", published as part of the
Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al.
(eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of
Physics 179, Springer, 201
Shape Self-Regulation in Early Lung Morphogenesis
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung’s striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree’s fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung’s complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways
Recommended from our members
The regulation of monoamine oxidase: a gene expression by distinct variable number tandem repeats
The monoamine oxidase A (MAOA) uVNTR (upstream variable number tandem repeat) is one of the most often cited examples of a gene by environment interaction (GxE) in relation to behavioral traits. However, MAOA possesses a second VNTR, 500 bp upstream of the uVNTR, which is termed d- or distal VNTR. Furthermore, genomic analysis indicates that there are a minimum of two transcriptional start sites (TSSs) for MAOA, one of which encompasses the uVNTR within the 5′ untranslated region of one of the isoforms. Through expression analysis in semi-haploid HAP1 cell lines genetically engineered in order to knockout (KO) either the uVNTR, dVNTR, or both VNTRs, we assessed the effect of the two MAOA VNTRs, either alone or in combination, on gene expression directed from the different TSSs. Complementing our functional analysis, we determined the haplotype variation of these VNTRs in the general population. The expression of the two MAOA isoforms was differentially modulated by the two VNTRs located in the promoter region. The most extensively studied uVNTR, previously considered a positive regulator of the MAOA gene, did not modulate the expression of what it is considered the canonical isoform, while we found that the dVNTR positively regulated this isoform in our model. In contrast, both the uVNTR and the dVNTR were found to act as negative regulators of the second less abundant MAOA isoform. The haplotype analysis for these two VNTRs demonstrated a bias against the presence of one of the potential variants. The uVNTR and dVNTR differentially affect expression of distinct MAOA isoforms, and thus, their combined profiling offers new insights into gene-regulation, GxE interaction, and ultimately MAOA-driven behavior
Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheel chair users with Spinal Cord Injury
Study design: Cross-sectional validation study.
Objectives: The goals of this study were to validate the use of accelerometers by means of multiple linear models (MLMs) to estimate the O2 consumption (VO2) in paraplegic persons and to determine the best placement for accelerometers on the human body.
Setting: Non-hospitalized paraplegics’ community.
Methods: Twenty participants (age=40.03 years, weight=75.8 kg and height=1.76 m) completed sedentary, propulsion and housework activities for 10 min each. A portable gas analyzer was used to record VO2. Additionally, four accelerometers (placed on the non-dominant chest, non-dominant waist and both wrists) were used to collect second-by-second acceleration signals. Minute-by-minute VO2 (ml kg−1 min−1) collected from minutes 4 to 7 was used as the dependent variable. Thirty-six features extracted from the acceleration signals were used as independent variables. These variables were, for each axis including the resultant vector, the percentiles 10th, 25th, 50th, 75th and 90th; the autocorrelation with lag of 1 s and three variables extracted from wavelet analysis. The independent variables that were determined to be statistically significant using the forward stepwise method were subsequently analyzed using MLMs.
Results: The model obtained for the non-dominant wrist was the most accurate (VO2=4.0558−0.0318Y25+0.0107Y90+0.0051YND2−0.0061ZND2+0.0357VR50) with an r-value of 0.86 and a root mean square error of 2.23 ml kg−1 min−1.
Conclusions: The use of MLMs is appropriate to estimate VO2 by accelerometer data in paraplegic persons. The model obtained to the non-dominant wrist accelerometer (best placement) data improves the previous models for this population.LM Garcia-Raffi and EA Sanchez-Perez gratefully acknowledge the support of the Ministerio de Economia y Competitividad under project #MTM2012-36740-c02-02. X Garcia-Masso is a Vali + D researcher in training with support from the Generalitat Valenciana.Garcia Masso, X.; Serra Añó, P.; García Raffi, LM.; Sánchez Pérez, EA.; Lopez Pascual, J.; González, L. (2013). Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheel chair users with Spinal Cord Injury. Spinal Cord. 51(12):898-903. https://doi.org/10.1038/sc.2013.85S8989035112Van den Berg-Emons RJ, Bussmann JB, Haisma JA, Sluis TA, van der Woude LH, Bergen MP et al. A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil 2008; 89: 2094–2101.Jacobs PL, Nash MS . Exercise recommendations for individuals with spinal cord injury. Sports Med 2004; 34: 727–751.Erikssen G . Physical fitness and changes in mortality: the survival of the fittest. Sports Med 2001; 31: 571–576.Warburton DER, Nicol CW, Bredin SSD . Health benefits of physical activity: the evidence. CMAJ 2006; 174: 801–809.Haennel RG, Lemire F . Physical activity to prevent cardiovascular disease. How much is enough? Can Fam Physician 2002; 48: 65–71.Manns PJ, Chad KE . Determining the relation between quality of life, handicap, fitness, and physical activity for persons with spinal cord injury. Arch Phys Med Rehabil 1999; 80: 1566–1571.Hetz SP, Latimer AE, Buchholz AC, Martin Ginis KA . Increased participation in activities of daily living is associated with lower cholesterol levels in people with spinal cord injury. Arch Phys Med Rehabil 2009; 90: 1755–1759.Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC et al. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 2009; 34: 640–647.Slater D, Meade MA . Participation in recreation and sports for persons with spinal cord injury: review and recommendations. Neurorehabilitation 2004; 19: 121–129.Valanou EM, Bamia C, Trichopoulou A . Methodology of physical-activity and energy-expenditure assessment: a review. J Public Health 2006; 14: 58–65.Liu S, Gao RX, Freedson PS . Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc 2012; 44: 2138–2146.Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M . Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008; 40: 181–188.Riddoch CJ, Bo Andersen L, Wedderkopp N, Harro M, Klasson-Heggebø L, Sardinha LB et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc 2004; 36: 86–92.Hiremath SV, Ding D . Evaluation of activity monitors in manual wheelchair users with paraplegia. J Spinal Cord Med 2011; 34: 110–117.Hiremath SV, Ding D . Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 835–838.Washburn R, Copay A . Assessing physical activity during wheelchair pushing: validity of a portable accelerometer. Adapt Phys Activ Q 1999; 16: 290–299.Hiremath SV, Ding D . Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 7348–7351.Hiremath SV, Ding D, Farringdon J, Cooper RA . Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor. Arch Phys Med Rehabil 2012; 93: 1937–1943.Bassett DR Jr, Ainsworth BE, Swartz AM, Strath SJ, O’Brien WL, King GA . Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc 2000; 32: S471–S480.Motl RW, Sosnoff JJ, Dlugonski D, Suh Y, Goldman M . Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis? Med Eng Phys 2010; 32: 1224–1228.Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012; 7: e39198.Macfarlane DJ . Automated metabolic gas analysis systems: a review. Sports Med 2001; 31: 841–861.Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307.Daubechies I . Ten Lectures on Wavelets. SIAM, Philadelphia. 1999.Debnat I . Wavelets and Signal Processing. Birkhauser, Boston. 2003.Collins EG, Gater D, Kiratli J, Butler J, Hanson K, Langbein WE . Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc 2010; 42: 691–700.Lee M, Zhu W, Hedrick B, Fernhall B . Determining metabolic equivalent values of physical activities for persons with paraplegia. Disabil Rehabil 2010; 32: 336–343.Crouter SE, Clowers KG, Bassett DR Jr . A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 2006; 100: 1324–1331
Observation of Bs-Bsbar Oscillations
We report the observation of Bs-Bsbar oscillations from a time-dependent
measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample
of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II
detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed
hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500
partially reconstructed semileptonic Bs decays. We measure the probability as a
function of proper decay time that the Bs decays with the same, or opposite,
flavor as the flavor at production, and we find a signal for Bs-Bsbar
oscillations. The probability that random fluctuations could produce a
comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure
Delta ms = 17.77 +- 0.10 (stat) +- 0.07 (syst) ps^-1
and extract
|Vtd/Vts| = 0.2060 +- 0.0007 (exp) + 0.0081 - 0.0060 (theor).Comment: 9 pages, 5 figures, submitted to Physical Review Letter
Precision measurement of the top quark mass from dilepton events at CDF II
We report a measurement of the top quark mass, M_t, in the dilepton decay
channel of
using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected
with the CDF II detector. We apply a method that convolutes a leading-order
matrix element with detector resolution functions to form event-by-event
likelihoods; we have enhanced the leading-order description to describe the
effects of initial-state radiation. The joint likelihood is the product of the
likelihoods from 78 candidate events in this sample, which yields a measurement
of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.})
\mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to
publication by journa
Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)
Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions
at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully
reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the
first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) /
B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our
measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23
(syst) improving the statistical uncertainty by more than a factor of two. We
find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs
-> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
Cross Section Measurements of High- Dilepton Final-State Processes Using a Global Fitting Method
We present a new method for studying high- dilepton events
(, , ) and simultaneously
extracting the production cross sections of , , and p\bar{p} \to \ztt at a center-of-mass energy of TeV. We perform a likelihood fit to the dilepton data in a parameter
space defined by the missing transverse energy and the number of jets in the
event. Our results, which use of data recorded with the CDF
II detector at the Fermilab Tevatron Collider, are pb, pb, and
\sigma(\ztt) =291^{+50}_{-46} pb.Comment: 20 pages, 2 figures, to be submitted to PRD-R
- …