33 research outputs found

    Error Oracle Attacks on CBC Mode: Is There a Future for CBC Mode Encryption?

    Get PDF
    This paper is primarily concerned with the CBC block cipher mode. The impact on the usability of this mode of recently proposed padding oracle attacks, together with other related attacks described in this paper, is considered. For applications where unauthenticated encryption is required, the use of CBC mode is compared with its major symmetric rival, namely the stream cipher. It is argued that, where possible, authenticated encryption should be used, and, where this is not possible, a stream cipher would appear to be a superior choice. This raises a major question mark over the future use of CBC mode, except as part of a more complex mode designed to provide authenticated encryption

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Early Results of the CASCADE Technology Demonstration Payload on CASSIOPE

    Get PDF
    CASSIOPE (CASCADE, SmallSat and Ionospheric Polar Explorer) is a Canadian SmallSat mission that supports two distinct payloads, a suite of eight space science instruments which are referred to as e-POP (Enhanced Polar Outflow Probe) and an experimental technology demonstration payload, entitled CASCADE CX, which is the focus of this paper. The experimental payload will be used to demonstrate key aspects of implementing a space-based high volume data transfer. The design has been specifically optimized to enable very large and timely data file transfers. The CASCADE CX payload has been commissioned and several demonstration experiments have occurred which have validated key enabling technologies and demonstrated the end-to-end transfers of very large data files. The results of these experiments have shown that a scaled up version of the CASCADE CX experimental payload could be built to support a composite 2.4 Gbps data transmission rate enabling the pickup/delivery of data at a rate in excess of 15 Gigabytes per minute of satellite access at a BER no worse than 1x10-17

    Moisture Sensor Design Using Spurline RF Resonator

    No full text

    Planned observations of thermal plasma drifts and solar wind interactions in the Martian ionosphere

    No full text
    The structure and dynamics of the Martian ionosphere are believed to be strongly dependent on the nature, magnitude, and topology of its magnetic field, and whether or not Mars has an intrinsic magnetic field. Due to the weak magnetic field on Mars, the Martian ionosphere interacts directly with the solar wind, resulting in significant outflows of keV ion beams and lower-energy “pick-up ” ions. We discuss the planned study of ion drifts and solar wind interactions in the Martian ionosphere using the Planet-B Thermal Plasma Analyzer. 1
    corecore