78 research outputs found

    Double beta decay experiments

    Full text link
    The present status of double beta decay experiments are reviewed. The results of the most sensitive experiments, NEMO-3 and CUORICINO, are discussed. Proposals for future double beta decay experiments are considered. In these experiments sensitivity for the effective neutrino mass will be on the level of (0.1-0.01) eV.Comment: 20 pages, 7 fugures; talk at 12-th Lomonosov Conference on Elementary Particle Physics (Moscow, August 25-31, 2005

    Search for β+\beta^+EC and ECEC processes in 112^{112}Sn and ββ\beta^-\beta^- decay of 124^{124}Sn to the excited states of 124^{124}Te

    Full text link
    Limits on β+\beta^+EC and ECEC processes in 112^{112}Sn and on ββ\beta^-\beta^- decay of 124^{124}Sn to the excited states of 124^{124}Te have been obtained using a 380 cm3^3 HPGe detector and an external source consisting of natural tin. A limit with 90% C.L. on the 112^{112}Sn half-life of 0.92×10200.92\times 10^{20} y for the ECEC(0ν\nu) transition to the 03+0^+_3 excited state in 112^{112}Cd (1871.0 keV) has been established. This transition is discussed in the context of a possible enhancement of the decay rate by several orders of magnitude given that the ECEC(0ν)(0\nu) process is nearly degenerate with an excited state in the daughter nuclide. Prospects for investigating such a process in future experiments are discussed. The ββ\beta^-\beta^- decay limits for 124^{124}Sn to the excited states of 124^{124}Te were obtained on the level of (0.81.2)×1021(0.8-1.2)\times 10^{21} y at the 90% C.L.Comment: 17 pages, 5 figure

    Isovector soft dipole mode in 6Be

    Get PDF
    By using the 1H(6Li,6Be)n charge-exchange reaction, continuum states in 6Be were populated up to E_t=16 MeV, E_t being the 6Be energy above its three-body decay threshold. In kinematically complete measurements performed by detecting alpha+p+p coincidences, an E_t spectrum of high statistics was obtained, containing approximately ~5x10^6 events. The spectrum provides detailed correlation information about the well-known 0^+ ground state of 6Be at E_t=1.37 MeV and its 2^+ state at E_t=3.05 MeV. Moreover, a broad structure extending from 4 to 16 MeV was observed. It contains negative parity states populated by Delta L=1 angular momentum transfer without other significant contributions. This structure can be interpreted as a novel phenomenon, i.e. the isovector soft dipole mode associated with the 6Li ground state. The population of this mode in the charge-exchange reaction is a dominant phenomenon for this reaction, being responsible for about 60% of the cross section obtained in the measured energy range.Comment: 8 pages, 7 figure

    Neutrinoless double-beta decay and seesaw mechanism

    Full text link
    From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures; additional reference

    Recent advances in neutrinoless double beta decay search

    Full text link
    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay (0ν0\nu-DBD) experimental discovery could be the ultimate answer to some delicate questions of elementary particle and nuclear physics. The Majorana description of neutrinos allows the 0ν0\nu-DBD process, and consequently either a mass value could be measured or the existence of physics beyond the standard should be confirmed without any doubt. As expected, the 0ν0\nu-DBD measurement is a very difficult field of application for experimentalists. In this paper, after a short summary of the latest results in neutrino physics, the experimental status, the R&D projects, and perspectives in 0ν0\nu-DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic

    Manipulating the Tomonaga-Luttinger exponent by electric field modulation

    Full text link
    We establish a theoretical framework for artificial control of the power-law singularities in Tomonaga-Luttinger liquid states. The exponent governing the power-law behaviors is found to increase significantly with an increase in the amplitude of the periodic electric field modulation applied externally to the system. This field-induced shift in the exponent indicates the tunability of the transport properties of quasi-one-dimensional electron systems.Comment: 7 pages, 3 figure

    Limits on different Majoron decay modes of 100^{100}Mo and 82^{82}Se for neutrinoless double beta decays in the NEMO-3 experiment

    Full text link
    The NEMO-3 tracking detector is located in the Fr\'ejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100^{100}Mo and 82^{82}Se for different Majoron emission modes and limits on the effective neutrino-Majoron coupling constants. In particular, new limits on "ordinary" Majoron (spectral index 1) decay of 100^{100}Mo (T1/2>2.71022T_{1/2} > 2.7\cdot10^{22} y) and 82^{82}Se (T1/2>1.51022T_{1/2} > 1.5\cdot10^{22} y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are <(0.41.9)104 < (0.4-1.9) \cdot 10^{-4} and <(0.661.7)104< (0.66-1.7) \cdot 10^{-4}.Comment: 23 pages includind 4 figures, to be published in Nuclear Physics

    Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    Full text link
    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
    corecore