44 research outputs found

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    On The Behaviour Of The Total Cross Section At Superhigh Energies From Cosmic-ray Data

    No full text
    We have performed a reanalysis of the Akeno data on absorption cross section by using different scenarios for the average inelasticity wherein it can alternatively be an increasing or a decreasing function of energy. The proton-proton total cross section and the proton-air inelastic cross section were calculated up to LHC energy scale. © 1995.3431-4410414Amos, (1992) Phys. Rev. Lett., 68, p. 2433Giromini, Luminosity-independent measurement of pp elastic scattering, single diffraction, dissociation and total cross section at s=546 and 1800 GeV (1993) Proc. Vth Blois Workshop on Elastic and Diffractive Scattering, p. 30. , H.M. Fried, K. Kang, C.-I. Tan, Providence, June 1993, World Scientific, ProvidenceHonda, (1993) Phys. Rev. Lett., 70, p. 525Nikolaev, (1993) Phys. Rev. D, 48, p. R1904Augier, Predictions on the total cross section and real part at LHC and SSC (1993) Physics Letters B, 315, p. 503He, (1993) J. Phys. G: Nucl. Part. Phys., 19, p. 1953Wilk, Wlodarczyk, A coupled analysis of the energy dependence of inelasticity and cross section in high energy reactions (1991) Proc. XXIIth Intern. Cosmic-Ray Conf., 4, p. 165. , D. O' Sullivan, Reprint Ltd, Dublin, Dublin, August 1991Bellandi, (1992) J. Phys. G: Nucl. Part. Phys., 18, p. 579Liland, Inclusive hadron production with nuclei targets (1987) Proc. XXth Intern. Cosmic-Ray Conf., 5, p. 178. , IUPAP, NAUKA, Moscow, Moscow, August 1987Basile, (1983) N. Cim. A, 73, p. 329Bellandi, (1992) Phys. Lett. B, 279, p. 149Bellandi, (1994) Phys. Rev. D, 50, p. 297Durães, Minijets and the behavior of inelasticity at high energies (1993) Physical Review D, 47, p. 3049Fowler, (1989) Phys. Rev. C, 40, p. 1219Azaryan, (1975) Sov. J. Nucl. Phys., 20, p. 213Slavatinskii, (1964) Sov. Phys. JETP, 19, p. 1452Glauber, (1959) Lectures in Theoretical Physics, 1, p. 135. , W. Britten, L.G. Dunham, Interscience, N.YGlauber, Matthiae, (1970) Nucl. Phys. B, 21, p. 135Durand, Pi, (1988) Phys. Rev. D, 38, p. 78Asakimori, Cosmic-Ray composition and spectra (1993) Proc. XXIIIth Intern. Cosmic-Ray Conf., 2, p. 21. , IUPAP, Univ. of Calgary, Calgary, Calgary, July 199

    Phosphine-free Heck Reaction: Mechanistic Insights And Catalysis "on Water" Using A Charge-tagged Palladium Complex

    No full text
    A novel Pd-complex with a charge tag (imidazolium cation) was applied for online monitoring of the neutral Heck reaction by electrospray ionization (tandem) mass spectrometry-ESI-MS(/MS). The results shed light on the mechanism of the reaction, whereas the charge-tagged ligand also allowed the unprecedented MS monitoring of Pd2+ reduction to Pd0. Key reaction intermediates associated with Pd catalysis could also be detected and characterized due to the presence of the charge tag on the Pd-complex. DFT calculations supported the proposed mechanism. The new charge-tagged Pd-complex is also shown to function as an active catalyst "on water" with the advantage of using cheaper and less reactive aryl chloride substrates in a phosphine-free version of the Heck reaction. © the Partner Organisations 2014.38729582963Kandukuri, S.R., Schiffner, J.A., Oestreich, M., (2012) Angew. Chem., Int. Ed., 51, pp. 1265-1269Faulkner, A., Bower, J.F., (2012) Angew. Chem., Int. Ed., 51, pp. 1675-1679Perez-Temprano, M.H., Casares, J.A., Espinet, P., (2012) Chem.-Eur. J., 18, pp. 1864-1884Cotugno, P., Monopoli, A., Ciminale, F., Cioffi, N., Nacci, A., (2012) Org. Biomol. Chem., 10, pp. 808-813Torborg, C., Beller, M., (2009) Adv. Synth. Catal., 351, pp. 3027-3043Budarin, V.L., Shuttleworth, P.S., Clark, J.H., Luque, R., (2010) Curr. Org. Synth., 7, pp. 614-627Blaser, H.U., Pugin, B., Spielvogel, D., (2011) Chim. Oggi, 29, pp. 62-65Cassol, C.C., Umpierre, A.P., Machado, G., Wolke, S.I., Dupont, J., (2005) J. Am. Chem. Soc., 127, pp. 3298-3299Consorti, C.S., Flores, F.R., Dupont, J., (2005) J. Am. Chem. Soc., 127, pp. 12054-12065Prediger, P., Genisson, Y., Correia, C.R.D., (2013) Curr. Org. Chem., 17, pp. 238-256Taylor, J.G., Moro, A.V., Correia, C.R.D., (2011) Eur. J. Org. Chem., pp. 1403-1428Coelho, F., Eberlin, M.N., (2011) Angew. Chem., Int. Ed., 50, pp. 5261-5263Santos, L.S., (2011) J. Braz. Chem. Soc., 22, pp. 1827-1840Amarante, G.W., Milagre, H.M.S., Vaz, B.G., Ferreira, B.R.V., Eberlin, M.N., Coelho, F., (2009) J. Org. Chem., 74, pp. 3031-3037Santos, L.S., (2008) Eur. J. Org. Chem., pp. 235-253Sabino, A.A., Machado, A.H.L., Correia, C.R.D., Eberlin, M.N., (2004) Angew. Chem., Int. Ed., 43, p. 4389Fernandes, T.D., Vaz, B.G., Eberlin, M.N., Da Silva, A.J.M., Costa, P.R.R., (2010) J. Org. Chem., 75, pp. 7085-7091Stefani, H.A., Pena, J.M., Gueogjian, K., Petragnani, N., Vaz, B.G., Eberlin, M.N., (2009) Tetrahedron Lett., 50, pp. 5589-5595Fiebig, L., Schmalz, H.G., Schafer, M., (2011) Int. J. Mass Spectrom., 308, pp. 307-310Smith, R.L., Kenttamaa, H.I., (1995) J. Am. Chem. Soc., 117, pp. 1393-1396Hinderling, C., Adlhart, C., Chen, P., (1998) Angew. Chem., Int. Ed., 37, pp. 2685-2689Bryce, D.J.F., Dyson, P.J., Nicholson, B.K., Parker, D.G., (1998) Polyhedron, 17, pp. 2899-2905Chisholm, D.M., McIndoe, J.S., (2008) Dalton Trans., pp. 3933-3945Yunker, L.P.E., Stoddard, R.L., McIndoe, J.S., (2014) J. Mass Spectrom., 49, pp. 1-8Schade, M.A., Feckenstem, J.E., Knochel, P., Koszinowski, K., (2010) J. Org. Chem., 75, pp. 6848-6857Vikse, K.L., Henderson, M.A., Oliver, A.G., McIndoe, J.S., (2010) Chem. Commun., 46, pp. 7412-7414Limberger, J., Leal, B.C., Back, D.F., Dupont, J., Monteiro, A.L., (2012) Adv. Synth. Catal., 354, pp. 1429-1436Oliveira, F.F.D., Dos Santos, M.R., Lalli, P.M., Schmidt, E.M., Bakuzis, P., Lapis, A.A.M., Monteiro, A.L., Neto, B.A.D., (2011) J. Org. Chem., 76, pp. 10140-10147Alvim, H.G.O., Fagg, E.L., De Oliveira, A.L., De Oliveira, H.C.B., Freitas, S.M., Xavier, M.-A.E., Soares, T.A., Neto, B.A.D., (2013) Org. Biomol. Chem., 11, pp. 4764-4777Ramos, L.M., Tobio, A., Dos Santos, M.R., De Oliveira, H.C.B., Gomes, A.F., Gozzo, F.C., De Oliveira, A.L., Neto, B.A.D., (2012) J. Org. Chem., 77, pp. 10184-10193Neto, B.A.D., Alves, M.B., Lapis, A.A.M., Nachtigall, F.M., Eberlin, M.N., Dupont, J., Suarez, P.A.Z., (2007) J. Catal., 249, pp. 154-161Machado, A.H.L., Milagre, H.M.S., Eberlin, L.S., Sabino, A.A., Correia, C.R.D., Eberlin, M.N., (2013) Org. Biomol. Chem., 11, pp. 3277-3281Ramos, L.M., Guido, B.C., Nobrega, C.C., Corrêa, J.R., Silva, R.G., De Oliveira, H.C.B., Gomes, A.F., Neto, B.A.D., (2013) Chem.-Eur. J., 19, pp. 4156-4168Medeiros, G.A., Da Silva, W.A., Bataglion, G.A., Ferreira, D.A.C., De Oliveira, H.C.B., Eberlin, M.N., Neto, B.A.D., (2014) Chem. Commun., 50, pp. 338-340Gozzo, F.C., Santos, L.S., Augusti, R., Consorti, C.S., Dupont, J., Eberlin, M.N., (2004) Chem.-Eur. J., 10, pp. 6187-6193Dos Santos, M.R., Diniz, J.R., Arouca, A.M., Gomes, A.F., Gozzo, F.C., Tamborim, S.M., Parize, A.L., Neto, B.A.D., (2012) ChemSusChem, 5, pp. 716-726Amatore, C., Jutand, A., (2000) Acc. Chem. Res., 33, pp. 314-321Kozuch, S., Shaik, S., Jutand, A., Amatore, C., (2004) Chem.-Eur. J., 10, pp. 3072-3080Kozuch, S., Amatore, C., Jutand, A., Shaik, S., (2005) Organometallics, 24, pp. 2319-2330Knowles, J.P., Whiting, A., (2007) Org. Biomol. Chem., 5, pp. 31-44Phan, N.T.S., Van Der Sluys, M., Jones, C.W., (2006) Adv. Synth. Catal., 348, pp. 609-679Dos Santos, M.R., Gomes, A.F., Gozzo, F.C., Suarez, P.A.Z., Neto, B.A.D., (2012) ChemSusChem, 5, pp. 2383-2389Corilo, Y.E., Nachtigall, F.M., Abdelnur, P.V., Ebeling, G., Dupont, J., Eberlin, M.N., (2011) RSC Adv., 1, pp. 73-78Mi, X.L., Luo, S.Z., Cheng, J.P., (2005) J. Org. Chem., 70, pp. 2338-2341Corma, A., Garcia, H., Leyva, A., (2004) Tetrahedron, 60, pp. 8553-8560Spickermann, C., Thar, J., Lehmann, S.B.C., Zahn, S., Hunger, J., Buchner, R., Hunt, P.A., Kirchner, B., (2008) J. Chem. Phys., 129, p. 10450
    corecore