432 research outputs found

    Microbiological influences on fracture surfaces of intact mudstone and the implications for geological disposal of radioactive waste

    Get PDF
    The significance of the potential impacts of microbial activity on the transport properties of host rocks for geological repositories is an area of active research. Most recent work has focused on granitic environments. This paper describes pilot studies investigating changes in transport properties that are produced by microbial activity in sedimentary rock environments in northern Japan. For the first time, these short experiments (39 days maximum) have shown that the denitrifying bacteria, Pseudomonas denitrificans, can survive and thrive when injected into flow-through column experiments containing fractured diatomaceous mudstone and synthetic groundwater under pressurized conditions. Although there were few significant changes in the fluid chemistry, changes in the permeability of the biotic column, which can be explained by the observed biofilm formation, were quantitatively monitored. These same methodologies could also be adapted to obtain information from cores originating from a variety of geological environments including oil reservoirs, aquifers and toxic waste disposal sites to provide an understanding of the impact of microbial activity on the transport of a range of solutes, such as groundwater contaminants and gases (e.g. injected carbon dioxide)

    Microbial impacts of CO2 transport in Sherwood Sandstone

    Get PDF
    Work carried out by BGS and the Japan Atomic Energy Authority (JAEA) has shown that microbial processes can have profound effects on the transport properties of host rock (i.e. the movement of fluids and contaminants through the host material) relevant to radioactive waste disposal. Recent research, performed as part of the BGS Radtran project, has examined Sherwood Sandstone samples in the context of radioactive waste disposal; this particular formation is also a potential reservoir for carbon dioxide storage in the UK. As part of the BGS opportunities fund programme, this project has, for the first time, evaluated interactions between fluids saturated with carbon dioxide/Sherwood Sandstone/microbes (Pseudomonas aeruginosa) in transport experiments, using BGS developed apparatus under pressurised subsurface conditions. This pilot study has highlighted the impacts of differences in the physical characteristics of core Sherwood Sandstone samples collected adjacent to each other in a core sample, and the ability of P. aeruginosa to survive in CO2 saturated artificial groundwater and the potential to form a biofilm in an environment suitable likely to be found at a carbon capture and storage location. These results demonstrate that in this short study, the injection of P. aeruginosa into the biotic experiment does not appear to impact on the physical transport properties of the Sherwood Sandstone, although the presence of CO2 appears to enhance the mobilisation of a number of chemical species. However, in other work which utilised the same organism and rock type but without introduction of CO2 saturated fluid, post-inoculation injection changes were observed. These included short but rapid saw-tooth like changes in the pressure profile (Wragg et al, 2012). These impacts were not observed in the current study which suggests that the CO2 saturated fluid was impacting on the ability of the microbes to alter permeability. This short study has, however, indicated the need to carry out longer term investigations to reproduce these initial findings

    Assessing hydrological controls on the lithium isotope weathering tracer

    Get PDF
    To investigate the impact of riverine discharge and weathering intensity on lithium isotopes (δ7Li) in a mono-lithological terrain, this study examines the dissolved load and leached suspended load (exchangeable, oxide, and clay fractions) from Icelandic rivers spanning a wide range of discharge, weathering rates, and weathering intensity. The δ7Lidissolved co-varies inversely with the discharge, confirming that water-rock interaction time is a primary control on the secondary mineral formation that fractionates Li isotopes. The “boomerang” shape observed in global rivers between the weathering intensity (i.e. W/D = weathering rate/denudation rate) and δ7Lidissolved also exists for these basaltic rivers at low to medium W/D. However, these rivers do not extend to such low δ7Lidissolved values as seen in the global compilation at low W/D, indicating that there is a lithological control on this relationship arising from the type of the lithology-specific secondary minerals forming and their precipitation rates. In addition, the Δ7Lix-dissolved between each leached solid phase and the dissolved load also co-varies with discharge. At low discharge (long water-rock interaction times), Δ7Lix-dissolved values agree with experimentally-determined equilibrium values, whereas less fractionated values are observed at higher discharge (shorter water-rock interaction times). As a result, there is a different relationship between W/D and Δ7Liclay-source in this basaltic terrain than previously reported from global multi-lithological river sediment samples, with clay leachates from Iceland more closely mimicking the boomerang shape of the dissolved load. However, the relationship between δ7Li and weathering processes is complicated because the fractionation between the clay fraction and the dissolved load is not constant but varies with both W/D and discharge. Overall, this study confirms the utility of Li isotopes as a tracer of modern and palaeo-weathering processes, and also has important implications for the specific interpretations of detrital δ7Li values, which may be more sensitive to weathering parameters than previously thought

    The Li isotope response to mountain uplift

    Get PDF
    Silicate weathering is a key process by which CO2 is removed from the atmosphere. It has been proposed that mountain uplift caused an increase in silicate weathering, and led to the long-term Cenozoic cooling trend, although this hypothesis remains controversial. Lithium isotopes are a tracer of silicate weathering processes, which may allow this hypothesis to be tested. Recent studies have demonstrated that the Li isotope ratio in seawater increased during the period of Himalayan uplift (~45 Ma), but the relationship between uplift and the Li isotope ratio of river waters has not been tested. Here we examine Li isotope ratios in rivers draining catchments with variable uplift rates from South Island, New Zealand. A negative trend between δ7Li and uplift shows that areas of rapid uplift have low δ7Li, whereas flatter floodplain areas have high δ7Li. Combined with U activity ratios, the data suggest that primary silicates are transported to floodplains, where δ7Li and (234U/238U) are driven to high values due to preferential uptake of 6Li by secondary minerals, and long fluid-mineral contact times that enrich waters in 234U. In contrast, in mountainous areas, fresh primary mineral surfaces are continuously provided, driving δ7Li and (234U/238U) low. This is the opposite trend to that expected if the increase in Cenozoic δ7Li in the oceans is driven directly by mountain uplift. These data suggests that, rather than weathering of mountain belts, the increase in seawater δ7Li reflects the formation of floodplains and the increased formation of secondary minerals

    Finite Theories and the SUSY Flavor Problem

    Get PDF
    We study a finite SU(5) grand unified model based on the non-Abelian discrete symmetry A_4. This model leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving the SUSY flavor problem.Comment: 17 pages, LaTeX, 1 figur

    A 14-year experience with kidney transplantation.

    Get PDF
    Between November, 1962 and August, 1975, 668 kidney transplants were done in 556 consecutive patients at Denver, Colorado. The Denver experience has been divided into 7 periods of time, according to the conditions of care during each period. The results in related transplantation have changed little during the decade beginning in 1966. The results in unrelated transplantation have not materially changed since 1968. The long-term patient survival after related transplantation has been better than after cadaver transplantation. The results of transplantation in 57 children ages 3 to 18 years have been slightly better than the results of adult transplantation. The outcome of kidney transplantation and the feasibility of improving this therapy with present techniques are limited by our inability to accurately match each patient with the immunologically best donor and by our inability to precisely control the immune system of the recipient. Rejection is still the main reason for graft loss, and sepsis remains the main cause of patient mortality. More specific and less toxic means of achieving graft acceptance are needed before a higher level of patient service can be realized. However, even with the tools now available, thousands of recipients throughout the world have been returned to useful lives

    Vedolizumab for Inflammatory Bowel Disease: Two-Year Results of the Initiative on Crohn and Colitis (ICC) Registry, A Nationwide Prospective Observational Cohort Study: ICC Registry – Vedolizumab

    Get PDF
    Prospective data of vedolizumab treatment for patients with inflammatory bowel disease (IBD) beyond 1 year of treatment is scarce but needed for clinical decision making. We prospectively enrolled 310 patients with IBD (191 with Crohn's disease (CD) and 119 patients with ulcerative colitis (UC)) with a follow-up period of 104 weeks (interquartile range: 103–104) in a nationwide registry. The corticosteroid-free clinical remission rate (Harvey Bradshaw Index ≤ 4, Short Clinical Colitis Activity index ≤ 2) at weeks 52 and 104 were 28% and 19% for CD and 27% and 28% for UC, respectively. Fifty-nine percent maintained corticosteroid-free clinical remission between weeks 52 and 104. Vedolizumab with concomitant immunosuppression showed comparable effectiveness outcomes compared with vedolizumab monotherapy (week 104: 21% vs. 23%; P = 0.77), whereas 8 of 13 severe infections occurred in patients treated with concomitant immunosuppression. To conclude, the clinical effect was 19% for CD and 28% for UC after 2 years of follow-up regardless of concomitant immunosuppression

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Clusters of galaxies: setting the stage

    Get PDF
    Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun. They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. In the current bottom-up scenario for the formation of cosmic structure, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ~50 % of this diffuse component has temperature ~0.01-1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 2; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    corecore