10 research outputs found

    Griffiths singularities in the two dimensional diluted Ising model

    Full text link
    We study numerically the probability distribution of the Yang-Lee zeroes inside the Griffiths phase for the two dimensional site diluted Ising model and we check that the shape of this distribution is that predicted in previous analytical works. By studying the finite size scaling of the averaged smallest zero at the phase transition we extract, for two values of the dilution, the anomalous dimension, η\eta, which agrees very well with the previous estimated values.Comment: 11 pages and 4 figures, some minor changes in Fig. 4, available at http://chimera.roma1.infn.it/index_papers_complex.htm

    Continuous phase transition in a spin-glass model without time-reversal symmetry

    Get PDF
    We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific heat exponent. We expect the nature of the transition in this 3-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.Comment: 19 pages, Latex, 16 ps figure

    Dynamical Behaviour of Low Autocorrelation Models

    Full text link
    We have investigated the nature of the dynamical behaviour in low autocorrelation binary sequences. These models do have a glass transition TGT_G of a purely dynamical nature. Above the glass transition the dynamics is not fully ergodic and relaxation times diverge like a power law τ(TTG)γ\tau\sim (T-T_G)^{-\gamma} with γ\gamma close to 22. Approaching the glass transition the relaxation slows down in agreement with the first order nature of the dynamical transition. Below the glass transition the system exhibits aging phenomena like in disordered spin glasses. We propose the aging phenomena as a precise method to determine the glass transition and its first order nature.Comment: 19 pages + 14 figures, LateX, figures uuencoded at the end of the fil

    Static chaos and scaling behaviour in the spin-glass phase

    Full text link
    We discuss the problem of static chaos in spin glasses. In the case of magnetic field perturbations, we propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some pure states are suppressed by the magnetic field and their free energy cost is determined by the finite-temperature fixed point exponents. In this framework, numerical results suggest that mean-field chaos exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results suggest that the zero-temperature fixed point exponent θ\theta is very close to d32\frac{d-3}{2}. In both approaches d=3d=3 is the lower critical dimension in agreement with recent numerical simulations.Comment: 28 pages + 6 figures, LateX, figures uuencoded at the end of fil

    Energy-Decreasing Dynamics in Mean-Field Spin Models

    Full text link
    We perform a statistical analysis of deterministic energy-decreasing algorithms on mean-field spin models with complex energy landscape like the Sine model and the Sherrington Kirkpatrick model. We specifically address the following question: in the search of low energy configurations is it convenient (and in which sense) a quick decrease along the gradient (greedy dynamics) or a slow decrease close to the level curves (reluctant dynamics)? Average time and wideness of the attraction basins are introduced for each algorithm together with an interpolation among the two and experimental results are presented for different system sizes. We found that while the reluctant algorithm performs better for a fixed number of trials, the two algorithms become basically equivalent for a given elapsed time due to the fact that the greedy has a shorter relaxation time which scales linearly with the system size compared to a quadratic dependence for the reluctant.Comment: 20 pages, 6 figures. New version, to appear on J.Phys.

    Quantum Fields and Extended Objects in Space-Times with Constant Curvature Spatial Section

    Full text link
    The heat-kernel expansion and ζ\zeta-regularization techniques for quantum field theory and extended objects on curved space-times are reviewed. In particular, ultrastatic space-times with spatial section consisting in manifold with constant curvature are discussed in detail. Several mathematical results, relevant to physical applications are presented, including exact solutions of the heat-kernel equation, a simple exposition of hyperbolic geometry and an elementary derivation of the Selberg trace formula. With regards to the physical applications, the vacuum energy for scalar fields, the one-loop renormalization of a self-interacting scalar field theory on a hyperbolic space-time, with a discussion on the topological symmetry breaking, the finite temperature effects and the Bose-Einstein condensation, are considered. Some attempts to generalize the results to extended objects are also presented, including some remarks on path integral quantization, asymptotic properties of extended objects and a novel representation for the one-loop (super)string free energy.Comment: Latex file, 122 page
    corecore