43 research outputs found

    Typhoid Fever and Invasive Nontyphoid Salmonellosis, Malawi and South Africa

    Get PDF
    To determine the prevalence of invasive nontyphoid salmonellosis and typhoid fever in Malawi and South Africa, we compared case frequency and patient age distribution. Invasive nontyphoid salmonellosis showed a clear bimodal age distribution; the infection developed in women at a younger age than in men. Case frequency for typhoid fever was lower than for salmonellosis

    Mass drug administration non-recipients

    Get PDF
    BACKGROUND: Repeated mass drug administration (MDA) with preventive chemotherapies is the mainstay of morbidity control for schistosomiasis and soil-transmitted helminths, yet the World Health Organization recently reported that less than one-third of individuals who required preventive chemotherapies received treatment. METHODS: Coverage of community-directed treatment with praziquantel (PZQ) and albendazole (ALB) was analyzed in 17 villages of Mayuge District, Uganda. National drug registers, household questionnaires, and parasitological surveys were collected to track 935 individuals before and after MDA. Multilevel logistic regressions, including household and village effects, were specified with a comprehensive set of socioeconomic and parasitological variables. The factors predicting who did not receive PZQ and ALB from community medicine distributors were identified. RESULTS: Drug receipt was correlated among members within a household, and nonrecipients of PZQ or ALB were profiled by household-level socioeconomic factors. Individuals were less likely to receive either PZQ or ALB if they had a Muslim household head or low home quality, belonged to the minority tribe, or had settled for more years in their village. Untreated individuals were also more likely to belong to households that did not purify drinking water, had no home latrine, and had no members who were part of the village government. CONCLUSIONS: The findings demonstrate how to locate and target individuals who are not treated in MDA. Infection risk factors were not informative. In particular, age, gender, and occupation were unable to identify non-recipients, although World Health Organization guidelines rely on these factors. Individuals of low socioeconomic status, minority religions, and minority tribes can be targeted to expand MDA coverage.This work was supported by the Vice Chancellor’s Fund of the University of Cambridge, the Schistosomiasis Control Initiative, the Wellcome Trust (Programme grant 083931/Z/07/Z to D.W.D), and the Netherlands Organization for Scientific Research (N.W.O. grant 452-04-333 to E.B.).This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/cid/civ82

    The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa.

    Get PDF
    There is paucity of data regarding the geographical distribution, incidence, and phylogenetics of multi-drug resistant (MDR) Salmonella Typhi in sub-Saharan Africa. Here we present a phylogenetic reconstruction of whole genome sequenced 249 contemporaneous S. Typhi isolated between 2008-2015 in 11 sub-Saharan African countries, in context of the 2,057 global S. Typhi genomic framework. Despite the broad genetic diversity, the majority of organisms (225/249; 90%) belong to only three genotypes, 4.3.1 (H58) (99/249; 40%), 3.1.1 (97/249; 39%), and 2.3.2 (29/249; 12%). Genotypes 4.3.1 and 3.1.1 are confined within East and West Africa, respectively. MDR phenotype is found in over 50% of organisms restricted within these dominant genotypes. High incidences of MDR S. Typhi are calculated in locations with a high burden of typhoid, specifically in children aged <15 years. Antimicrobial stewardship, MDR surveillance, and the introduction of typhoid conjugate vaccines will be critical for the control of MDR typhoid in Africa

    The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries

    Get PDF
    Funder: Swedish International Development Cooperation Agency (SIDA)Funder: Government of Republic of KoreaFunder: US Centers for Disease Control and PreventionBackground: Invasive non-typhoidal Salmonella (iNTS) is one of the leading causes of bacteraemia in sub-Saharan Africa. We aimed to provide a better understanding of the genetic characteristics and transmission patterns associated with multi-drug resistant (MDR) iNTS serovars across the continent. Methods: A total of 166 iNTS isolates collected from a multi-centre surveillance in 10 African countries (2010–2014) and a fever study in Ghana (2007–2009) were genome sequenced to investigate the geographical distribution, antimicrobial genetic determinants and population structure of iNTS serotypes–genotypes. Phylogenetic analyses were conducted in the context of the existing genomic frameworks for various iNTS serovars. Population-based incidence of MDR-iNTS disease was estimated in each study site. Results: Salmonella Typhimurium sequence-type (ST) 313 and Salmonella Enteritidis ST11 were predominant, and both exhibited high frequencies of MDR; Salmonella Dublin ST10 was identified in West Africa only. Mutations in the gyrA gene (fluoroquinolone resistance) were identified in S. Enteritidis and S. Typhimurium in Ghana; an ST313 isolate carrying blaCTX-M-15 was found in Kenya. International transmission of MDR ST313 (lineage II) and MDR ST11 (West African clade) was observed between Ghana and neighbouring West African countries. The incidence of MDR-iNTS disease exceeded 100/100 000 person-years-of-observation in children aged <5 years in several West African countries. Conclusions: We identified the circulation of multiple MDR iNTS serovar STs in the sampled sub-Saharan African countries. Investment in the development and deployment of iNTS vaccines coupled with intensified antimicrobial resistance surveillance are essential to limit the impact of these pathogens in Africa

    Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study.

    Get PDF
    BACKGROUND: Available incidence data for invasive salmonella disease in sub-Saharan Africa are scarce. Standardised, multicountry data are required to better understand the nature and burden of disease in Africa. We aimed to measure the adjusted incidence estimates of typhoid fever and invasive non-typhoidal salmonella (iNTS) disease in sub-Saharan Africa, and the antimicrobial susceptibility profiles of the causative agents. METHODS: We established a systematic, standardised surveillance of blood culture-based febrile illness in 13 African sentinel sites with previous reports of typhoid fever: Burkina Faso (two sites), Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar (two sites), Senegal, South Africa, Sudan, and Tanzania (two sites). We used census data and health-care records to define study catchment areas and populations. Eligible participants were either inpatients or outpatients who resided within the catchment area and presented with tympanic (≥38·0°C) or axillary temperature (≥37·5°C). Inpatients with a reported history of fever for 72 h or longer were excluded. We also implemented a health-care utilisation survey in a sample of households randomly selected from each study area to investigate health-seeking behaviour in cases of self-reported fever lasting less than 3 days. Typhoid fever and iNTS disease incidences were corrected for health-care-seeking behaviour and recruitment. FINDINGS: Between March 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS isolates were cultured from the blood of 13 431 febrile patients. Salmonella spp accounted for 33% or more of all bacterial pathogens at nine sites. The adjusted incidence rate (AIR) of S Typhi per 100 000 person-years of observation ranged from 0 (95% CI 0-0) in Sudan to 383 (274-535) at one site in Burkina Faso; the AIR of iNTS ranged from 0 in Sudan, Ethiopia, Madagascar (Isotry site), and South Africa to 237 (178-316) at the second site in Burkina Faso. The AIR of iNTS and typhoid fever in individuals younger than 15 years old was typically higher than in those aged 15 years or older. Multidrug-resistant S Typhi was isolated in Ghana, Kenya, and Tanzania (both sites combined), and multidrug-resistant iNTS was isolated in Burkina Faso (both sites combined), Ghana, Kenya, and Guinea-Bissau. INTERPRETATION: Typhoid fever and iNTS disease are major causes of invasive bacterial febrile illness in the sampled locations, most commonly affecting children in both low and high population density settings. The development of iNTS vaccines and the introduction of S Typhi conjugate vaccines should be considered for high-incidence settings, such as those identified in this study. FUNDING: Bill & Melinda Gates Foundation

    Sensitivity and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two sub-Saharan African sites

    No full text
    OBJECTIVE: To evaluate three commercial typhoid rapid antibody tests for Salmonella Typhi antibodies in patients suspected of having typhoid fever in Mpumalanga, South Africa, and Moshi, United Republic of Tanzania. METHODS: The diagnostic accuracy of Cromotest® (semiquantitative slide agglutination and single tube Widal test),TUBEX®and Typhidot® was assessed against that of blood culture. Performance was modelled for scenarios with pretest probabilities of 5% and 50%. FINDINGS: In total 92 patients enrolled: 53 (57.6%) from South Africa and 39 (42.4%) from the United Republic of Tanzania. Salmonella Typhi was isolated from the blood of 28 (30.4%) patients. The semiquantitative slide agglutination and single-tube Widal tests had positive predictive values (PPVs) of 25.0% (95% confidence interval, CI: 0.6-80.6) and 20.0% (95% CI: 2.5-55.6), respectively. The newer typhoid rapid antibody tests had comparable PPVs: TUBEX®, 54.1% (95% CI: 36.9-70.5); Typhidot® IgM, 56.7% (95% CI: 37.4-74.5); and Typhidot® IgG, 54.3% (95% CI: 36.6-71.2). For a pretest probability of 5%, PPVs were: TUBEX®, 11.0% (95% CI: 6.6-17.9); Typhidot® IgM, 9.1% (95% CI: 5.8-14.0); and Typhidot® IgG, 11.0% (6.3-18.4). For a pretest probability of 50%, PPVs were: TUBEX®, 70.2% (95% CI: 57.3-80.5); Typhidot® IgM, 65.6% (95% CI: 54.0-75.6); and Typhidot® IgG, 70.0% (95% CI: 56.0-81.1). CONCLUSION: Semiquantitative slide agglutination and single-tube Widal tests performed poorly. TUBEX® and Typhidot® may be suitable when pretest probability is high and blood cultures are unavailable, but their performance does not justify deployment in routine care settings in sub-Saharan Africa
    corecore