1,013 research outputs found
Developments in ROOT I/O and trees
For the last several months the main focus of development in the ROOT I/O
package has been code consolidation and performance improvements. Access to
remote files is affected both by bandwidth and latency. We introduced a
pre-fetch mechanism to minimize the number of transactions between client and
server and hence reducing the effect of latency. We will review the
implementation and how well it works in different conditions (gain of an order
of magnitude for remote file access). We will also review new utilities,
including a faster implementation of TTree cloning (gain of an order of
magnitude), a generic mechanism for object references, and a new entry list
mechanism tuned both for small and large number of selections. In addition to
reducing the coupling with the core module and becoming its owns library
(libRIO) (as part of the general restructuration of the ROOT libraries), the
I/O package has been enhanced in the area of XML and SQL support, thread
safety, schema evolution, TTreeFormula, and many other areas. We will also
discuss various ways, ROOT will be able to benefit from multi-core architecture
to improve I/O performances
An old problem in a new light: elemental and lead isotopic analysis of Luristan Bronzes
Material Culture Studie
Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.
Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers
Wearable technology and the cardiovascular system: the future of patient assessment
The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research
Challenging the challenge: handling data in the Gigabit/s range
The ALICE experiment at CERN will propose unprecedented requirements for
event building and data recording. New technologies will be adopted as well as
ad-hoc frameworks, from the acquisition of experimental data up to the transfer
onto permanent media and its later access. These issues justify a careful,
in-depth planning and preparation. The ALICE Data Challenge is a very important
step of this development process where simulated detector data is moved from
dummy data sources up to the recording media using processing elements and
data-paths as realistic as possible. We will review herein the current status
of past, present and future ALICE Data Challenges, with particular reference to
the sessions held in 2002 when - for the first time - streams worth one week of
ALICE data were recorded onto tape media at sustained rates exceeding 300 MB/s.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 9 pages, PDF. PSN MOGT00
The BioDynaMo project: Experience report
© 2017, IGI Global. All rights reserved. Computer simulations have become a very powerful tool for scientific research. Given the vast complexity that comes with many open scientific questions, a purely analytical or experimental approach is often not viable. For example, biological systems comprise an extremely complex organization and heterogeneous interactions across different spatial and temporal scales. In order to facilitate research on such problems, the BioDynaMo project aims at a general platform for computer simulations for biological research. Since scientific investigations require extensive computer resources, this platform should be executable on hybrid cloud computing systems, allowing for the efficient use of state-of-the-art computing technology
Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches
PMCID: PMC3668194SEP was directly funded by the National Institute for Health Research
Cardiovascular Biomedical Research Unit at Barts. SN acknowledges support
from the Oxford NIHR Biomedical Research Centre and from the Oxford
British Heart Foundation Centre of Research Excellence. SP and PL are
funded by a BHF Senior Clinical Research fellowship. RC is supported by a
BHF Research Chair and acknowledges the support of the Oxford BHF Centre
for Research Excellence and the MRC and Wellcome Trust. PMM gratefully
acknowledges training fellowships supporting his laboratory from the
Wellcome Trust, GlaxoSmithKline and the Medical Research Council
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
- …