34 research outputs found

    Constituents of the soft X-ray background

    Full text link
    The X-ray background is generated by various classes of objects and variety of emission mechanisms. Relative contribution of individual components depends on energy. The goal is to assess the integral emission of the major components of the soft X-ray background (extragalactic discrete sources dominated by AGNs, galactic plasma, and the Warm/Hot Intergalactic Medium), investigating the angular structure of the background. Fluctuations of the background are measured using the auto-correlation function of the XRB determined in 5 energy bands between 0.3 and 4.5 keV. The investigation is based on the extensive observational data set selected from the XMM-Newton archives. Amplitudes of the auto-correlation functions calculated in three energy bands above ~1 keV are consistent with the conjecture that the background fluctuations result solely from clustering of sources which produce the background. At energies below 1 keV the relative fluctuation amplitude decreases indicating that a fraction of the soft XRB is associated with a smooth plasma emission in the Galaxy. It is shown, however, that the mean spectrum of extragalactic discrete sources steepens in the soft X-rays and is not well represented by a single power law in the energy range 0.3-4.5 keV. The WHIM contribution to the total background fluctuations is small and consistent with the WHIM properties derived from the cross-correlation of the XRB with galaxies.Comment: 7 pages, 2 figure

    Missing baryons and the soft X-ray background

    Get PDF
    The X-ray background intensity around Lick count galaxies and rich clusters of galaxies is investigated in three ROSAT energy bands. It is found that the X-ray enhancements surrounding concentrations of galaxies exhibit significantly softer spectrum than the standard cluster emission and the average extragalactic background. The diffuse soft emission accompanying the galaxies is consistent with the thermal emission of the hot gas postulated first by the Cen & Ostriker hydrodynamic simulations. Our estimates of the gas temperature - although subject to large uncertainties - averaged over several Mpc scales are below 1 keV, which is substantially below the temperature of the intra-cluster gas, but consistent with temperatures predicted for the local intergalactic medium. It is pointed out that the planned ROSITA mission would be essential for our understanding of the diffuse thermal component of the background.Comment: AA accepted, 6 pages, incl. 4 figure

    The diffuse X-ray background

    Full text link
    The deepest observations of the X-ray background approach the surface brightness of the truly diffuse component generated by Thomson scattering of cosmic X-ray photons. Available estimates of the electron density and the X-ray luminosity density of AGNs as a function of cosmological epoch are used to calculate the integral scattered X-ray background component. It is shown that the scattered component constitutes 1.0 - 1.7 % of the total background, depending on the AGN cosmic evolution. Albeit this is a minute fragment of the total flux, it becomes a perceptible fraction of the still unresolved part of the background and should be taken into account in the future rigorous assessments of the X-ray background structure. This diffuse component at energies < 1 keV sums up with the emission by WHIM to 3 - 4 %. Consequently, one should expect that integrated counts of discrete sources account for just 96 - 97 % for soft background and ~99 % at higher energies.Comment: 5 pages, 2 figures, AA in prin

    The harmonic power spectrum of the soft X-ray background I. The data analysis

    Get PDF
    Fluctuations of the soft X-ray background are investigated using harmonic analysis. A section of the ROSAT All-Sky Survey around the north galactic pole is used. The flux distribution is expanded into a set of harmonic functions and the power spectrum is determined. Several subsamples of the RASS have been used and the spectra for different regions and energies are presented. The effects of the data binning in pixels are assessed and taken into account. The spectra of the analyzed samples reflect both small scale effects generated by strong discrete sources and the large scale gradients of the XRB distribution. Our results show that the power spectrum technique can be effectively used to investigate anisotropy of the XRB at various scales. This statistics will become a useful tool in the investigation of various XRB components.Comment: 12 pages, A&A accepte

    Infinite-dimensional Compact Quantum Semigroup

    Full text link
    In this paper we construct a compact quantum semigroup structure on the Toeplitz algebra T\mathcal{T}. The existence of a subalgebra, isomorphic to the algebra of regular Borel's measures on a circle with convolution product, in the dual algebra T\mathcal{T}^* is shown. The existence of Haar functionals in the dual algebra and in the above-mentioned subalgebra is proved. Also we show the connection between T\mathcal{T} and the structure of weak Hopf algebra.Comment: 17 page

    A Characterization of right coideals of quotient type and its application to classification of Poisson boundaries

    Full text link
    Let GG be a co-amenable compact quantum group. We show that a right coideal of GG is of quotient type if and only if it is the range of a conditional expectation preserving the Haar state and is globally invariant under the left action of the dual discrete quantum group. We apply this result to theory of Poisson boundaries introduced by Izumi for discrete quantum groups and generalize a work of Izumi-Neshveyev-Tuset on SUq(N)SU_q(N) for co-amenable compact quantum groups with the commutative fusion rules. More precisely, we prove that the Poisson integral is an isomorphism between the Poisson boundary and the right coideal of quotient type by maximal quantum subgroup of Kac type. In particular, the Poisson boundary and the quantum flag manifold are isomorphic for any q-deformed classical compact Lie group.Comment: 28 pages, Remark 4.9 adde

    The nature of the unresolved extragalactic soft CXB

    Get PDF
    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV CXB with deep Chandra 4 Ms observations in the CDFS. We measured a signal which, on scales >30", is significantly higher than the Shot-Noise and is increasing with the angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like AGN, Galaxies and Inter-Galactic-Medium (IGM). The power of unresolved cosmic sources fluctuations accounts for \sim 12% of the 0.5-2 keV extragalactic CXB. Overall, our modeling predicts that \sim 20% of the unresolved CXB flux is made by low luminosity AGN, \sim 25% by galaxies and \sim 55% by the IGM (Inter Galactic Medium). We do not find any direct evidence of the so called Warm Hot Intergalactic Medium (i.e. matter with 10^5K<T<10^7K and density contrast {\delta} <1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit to the space density of postulated X-ray-emitting early black hole at z>7.5 and compared it with SMBH evolution models.Comment: 15 pages, 9 figures, accepted by MNRA

    On the cosmic evolution of the scaling relations between black holes and their host galaxies: Broad Line AGN in the zCOSMOS survey

    Get PDF
    (Abriged) We report on the measurement of the rest frame K-band luminosity and total stellar mass of the hosts of 89 broad line Active Galactic Nuclei detected in the zCOSMOS survey in the redshift range 1<z<2.2. The unprecedented multiwavelength coverage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their Spectral Energy Distributions. We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host galaxy mass ratio appears to evolve positively with redshift, with a best fit evolution of the form (1+z)^{0.68 \pm0.12 +0.6 -0.3}, where the large asymmetric systematic errors stem from the uncertainties in the choice of IMF, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the MBH-M* relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of nuclear black holes and host galaxies.Comment: 47 pages, 8 figures. Accepted for publication in Ap

    Local Supermassive Black Holes, Relics of Active Galactic Nuclei and the X-ray Background

    Full text link
    We quantify the importance of mass accretion during AGN phases in the growth of supermassive black holes (BH) by comparing the mass function of black holes in the local universe with that expected from AGN relics, which are black holes grown entirely with mass accretion during AGN phases. The local BH mass function (BHMF) is estimated by applying the well-known correlations between BH mass, bulge luminosity and stellar velocity dispersion to galaxy luminosity and velocity functions. The density of BH's in the local universe is 4.6 (-1.4; +1.9) (h/0.7)^2 10^5 Msun Mpc^-3. The relic BHMF is derived from the continuity equation with the only assumption that AGN activity is due to accretion onto massive BH's and that merging is not important. We find that the relic BHMF at z=0 is generated mainly at z<3. Moreover, the BH growth is anti-hierarchical in the sense that smaller BH's (MBH< 10^7 Msun) grow at lower redshifts (z<1) with respect to more massive one's (z~1-3). Unlike previous work, we find that the BHMF of AGN relics is perfectly consistent with the local BHMF indicating the local BH's were mainly grown during AGN activity. This agreement is obtained while satisfying, at the same time, the constraints imposed from the X-ray background. The comparison with the local BHMF also suggests that the merging process is not important in shaping the relic BHMF, at least at low redshifts (z<3). Our analysis thus suggests the following scenario: local black holes grew during AGN phases in which accreting matter was converted into radiation with efficiencies epsilon = 0.04-0.16 and emitted at a fraction lambda = 0.1-1.7 of the Eddington luminosity. The average total lifetime of these active phases ranges from ~4.5 10^8 yr for MBH 10^9 Msun. (abridged)Comment: 19 pages, 18 figures, MNRAS in press, minor changes following referee's comment
    corecore